
Free Oscillations and Rotations of a Rigid

Pendulum: Summary of the Theory

1 The Physical System

The most familiar example of a nonlinear mechanical oscillator is an ordinary
pendulum in a gravitational field, that is, any rigid body that can swing and
rotate about some fixed horizontal axis (a physical pendulum), or a massive
small bob at the end of a rigid rod of negligible mass (a simple pendulum). We
employ a rigid rod rather than a flexible string in order to examine complete
revolutions of the pendulum as well as its swinging to and fro.

The simple pendulum is a frequently encountered useful physical model.
It is interesting not only in itself but more importantly because many prob-
lems in the physics of oscillations can be reduced to the differential equation
describing the motion of a pendulum.

In the state of stable equilibrium the center of mass of the pendulum is
located vertically below the axis of rotation. When the pendulum is deflected
from this position through an angle ϕ, the restoring torque of the gravita-
tional force is proportional to sin ϕ. In the case of small angles ϕ (i.e., for
small oscillations of the pendulum) the values of the sine and of its argument
nearly coincide (sin ϕ ≈ ϕ), and the pendulum behaves like a linear oscil-
lator. In particular, in the absence of friction it executes simple harmonic
motion. However, when the amplitude is large, the motion is oscillatory but
no longer simple harmonic. In this case, a graph of the angular displacement
versus time noticeably departs from a sine curve, and the period of oscillation
noticeably depends on the amplitude.

If the angular velocity imparted to the pendulum at its initial excitation
is great enough, the pendulum at first executes complete revolutions losing
energy through friction, after which it oscillates back and forth.

2 The Differential Equation of Motion for a

Pendulum

The equation of rotation of a solid about a fixed axis in the absence of friction
in the case of a physical pendulum in a uniform gravitational field is:

Jϕ̈ = −mga sin ϕ. (1)

Here J is the moment of inertia of the pendulum relative the axis of rotation,
a is the distance between this axis and the center of mass, and g is the
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acceleration of gravity. The left-hand side of Eq. (1) is the time rate of change
of the angular momentum, and the right-hand side is the restoring torque
of the force of gravity. This torque is the product of the force mg (applied
at the center of mass) and the lever arm a sin ϕ of this force. Dividing both
sides of Eq. (1) by J we have:

ϕ̈ + ω2
0 sin ϕ = 0, (2)

where the notation ω2
0 = mga/J is introduced.

For a simple pendulum a = l, J = ml2, and so ω2
0 = g/l. For a physical

pendulum, the expression for ω2
0 can be written in the same form as for a

simple pendulum provided we define a quantity l to be given by l = J/(ma).
It has the dimension of length, and is called the reduced or effective length of
a physical pendulum. Since the differential equation of motion of a physical
pendulum with an effective length l is the same as that for a simple pendulum
of the same length, the two systems are dynamically equivalent.

3 Physical Parameters of the Pendulum

At small angles of deflection from stable equilibrium, we can replace sin ϕ
with ϕ in Eq. (2). Then Eq. (2) becomes the differential equation of motion
of a linear oscillator. Therefore, the quantity ω0 in the differential equation
of the pendulum, Eq. (2), has the physical sense of the angular frequency of
small oscillations of the pendulum in the absence of friction.

In the presence of a torque due to viscous friction, we must add a term to
the right-hand side of Eq. (2) which is proportional to the angular velocity
ϕ̇. Thus, with friction included, the differential equation of the pendulum
assumes the form:

ϕ̈ + 2γϕ̇ + ω2
0 sin ϕ = 0. (3)

We see that a pendulum is characterized by two parameters: the angular
frequency ω0 of small free oscillations, and the damping constant γ, which
has the dimensions of frequency (or of angular velocity). As in the case of
a linear oscillator, it is convenient to use the dimentionless quality factor
Q = ω0/(2γ) rather than the damping constant γ to measure the effect of
damping. At small free oscillations of the pendulum, the value Q/π is the
number of complete cycles during which the amplitude decreases by a factor
of e ≈ 2.72.

The principal difference between Eq. (3) for the pendulum and the corre-
sponding differential equation of motion for a spring oscillator is that Eq. (3)
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is a nonlinear differential equation. The difficulties in obtaining an analyt-
ical solution of Eq. (3) are caused by its nonlinearity. In the general case
it is impossible to express the solution of Eq. (3) in elementary functions
(although in the absence of friction the solution of Eq. (2) can be given in
terms of special functions called elliptic integrals).

4 The Period of Small Oscillations

Nonlinear character of the pendulum is revealed primarily in dependence of
the period of oscillations on the amplitude. To find an approximate formula
for this dependence, we should keep the next term in the expansion of sin ϕ
in Eq. (2) into the power series:

sin ϕ ≈ ϕ− 1

6
ϕ3. (4)

An approximate solution to the corresponding nonlinear differential equa-
tion (for the conservative pendulum with γ = 0),

ϕ̈ + ω2
0ϕ−

1

6
ω2

0ϕ
3 = 0, (5)

can be searched as a superposition of the sinusoidal oscillation ϕ(t) = ϕm cos ωt
and its third harmonic εϕm cos 3ωt whose frequency equals 3ω. (We assume
t = 0 to be the moment of maximal deflection). This solution is found in
many textbooks. The corresponding derivation is a good exercise for stu-
dents, allowing them to get an idea of analytical perturbational methods.
The fractional contribution ε of the third harmonic equals ϕ2

m/192, where
ϕm is the amplitude of the principal harmonic component whose frequency
ω differs from the limiting frequency ω0 of small oscillations by a term pro-
portional to the square of the amplitude:

ω ≈ ω0(1− ϕ2
m/16), T ≈ T0(1 + ϕ2

m/16). (6)

The same approximate formula for the period, Eq. (6), can be obtained
from the exact solution expressed in terms of elliptic integrals by expanding
the exact solution into a power series with respect to the amplitude ϕm.

Equation (6) shows that, say, for ϕm = 30◦ (0.52 rad) the fractional
increment of the period (compared to the period of infinitely small oscilla-
tions) equals 0.017 (1.7%). The fractional contribution of the third harmonic
in this non-sinusoidal oscillation equals 0.14%, that is, its amplitude equals
only 0.043◦.
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The simulation program allows us to verify this approximate formula
for the period. The table below gives the values of T (for several values
of the amplitude) calculated with the help of Eq. (6) and measured in the
computational experiment. Comparing the values in the last two columns,
we see that the approximate formula, Eq. (6), gives the value of the period for
the amplitude of 45◦ with an error of only (1.0400−1.0386)/1.04 = 0.0013 =
0.13%. However, for 90◦ the error is already 2.24%. The error does not
exceed 1% for amplitudes up to 70◦.

Amplitude T/T0 T/T0

ϕm (calculated) (measured)

30◦ (π/6) 1.0171 1.0175
45◦ (π/4) 1.0386 1.0400
60◦ (π/3) 1.0685 1.0732
90◦ (π/2) 1.1539 1.1803

120◦ (2π/3) 1.2742 1.3730
135◦ (3π/4) 1.3470 1.5279
150◦ (5π/6) 1.4284 1.7622

5 The Phase Portrait of the Pendulum

A general idea about the free motion of the pendulum resulting from various
values of energy imparted to the pendulum is given by its phase trajectories.
In general, the appearance or structure of a phase diagram tells us a great
deal about the possible motions of a nonlinear physical system.

We can construct the family of phase trajectories for a conservative sys-
tem without explicitly solving the differential equation of motion of the sys-
tem. The equations for phase trajectories follow directly from the law of the
conservation of energy. The potential energy Epot(ϕ) of a pendulum in the
gravitational field depends on the angle of deflection ϕ measured from the
equilibrium position:

Epot(ϕ) = mga(1− cos ϕ). (7)

A graph of Epot(ϕ) is shown in the upper part of Fig. 1. The potential
energy of the pendulum has a minimal value of zero in the lower stable
equilibrium position (at ϕ = 0), and a maximal value of 2mga (assumed as
a unit of energy in Fig. 1) in the inverted position (at ϕ = ±π) of unstable
equilibrium.
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Figure 1: The potential well and the phase portrait of the conservative pen-
dulum.

In the absence of friction, the total energy E of the pendulum, i.e., the
sum of its kinetic energy, 1

2
Jϕ̇2, and potential energy, remains constant during

the motion:

1

2
Jϕ̇2 + mga(1− cos ϕ) = E. (8)

This equation gives the relation between ϕ̇ and ϕ, and therefore is the
equation of the phase trajectory which corresponds to a definite value E
of total energy. It is convenient to express Eq. (8) in a slightly different
form. Recalling that mga/J = ω2

0 and defining the quantity E0 = Jω2
0/2

(the quantity E0 has the physical sense of the kinetic energy of a body with
the moment of inertia J , rotating with the angular velocity ω0), we rewrite
Eq. (8):

ϕ̇2

ω2
0

+ 2(1− cos ϕ) =
E

E0

. (9)

If the total energy E of the pendulum is less than the maximal possible
value of its potential energy (E < 2mga = 4E0), that is, if the total energy
is less than the height of the potential barrier shown in Fig. 1, the pendulum
swings back and forth between the extreme deflections ϕm and −ϕm. These
angles correspond to the extreme points at which the potential energy Epot(ϕ)
becomes equal to the total energy E of the pendulum. If the amplitude is
small (ϕm � π/2), the oscillations are nearly sinusoidal in time, and the
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corresponding phase trajectory is nearly an ellipse. The elliptical shape of the
curve follows from Eq. (9) if we substitute there the approximate expression
cos ϕ ≈ 1− ϕ2/2 valid for small angles ϕ:

ϕ̇2

Eω2
0/E0

+
ϕ2

E/E0

= 1. (10)

This is the equation of an ellipse in the phase plane (ϕ, ϕ̇). Its horizontal

semiaxis equals the maximal deflection angle ϕm =
√

E/E0. If the angular
velocity ϕ̇ on the ordinate axis is plotted in units of the angular frequency
ω0 of small free oscillations, the ellipse (10) becomes a circle.

The greater the total energy E (and thus the greater the amplitude ϕm),
the greater the departure of the motion from simple harmonic and the greater
the departure of the phase trajectory from an ellipse. The width of the phase
trajectory increases horizontally (along ϕ-axis) as the energy E increases to
2mga.

If E > 2mga, the kinetic energy and the angular velocity of the pendulum
are non-zero even at ϕ = ±π. In contrast to the case of swinging, now the
angular velocity does not change its sign. The pendulum executes rotation
in a full circle. This rotation is nonuniform. When the pendulum passes
through the lowest point (through the position of stable equilibrium), its an-
gular velocity is greatest, and when the pendulum passes through the highest
point (through the position of unstable equilibrium), its angular velocity is
smallest.

In the phase plane, rotation of the pendulum is represented by the paths
which continue beyond the vertical lines ϕ = ±π, repeating themselves every
full cycle of revolution, as shown in Fig. 1. Upper paths lying above the ϕ-
axis, where ϕ̇ is positive and ϕ grows in value, correspond to counterclockwise
rotation, and paths below the axis, along which the representative point
moves from the right to the left, correspond to clockwise rotation of the
pendulum.

For a conservative system, the equation of a phase trajectory (e.g., Eq. (9)
in the case of a pendulum) is always an even function of ϕ̇, because the energy
depends only on ϕ̇2. Consequently, the phase trajectory of a conservative
system is symmetric about the horizontal ϕ-axis. This symmetry means that
the motion of the system in the clockwise direction is mechanically the same
as the motion in the counterclockwise direction. In other words, the motion
of a conservative system is reversible: if we instantaneously change the sign
of its velocity, the representative point jumps to the symmetric position of
the same phase trajectory on the other side of the horizontal ϕ-axis. In
the reverse motion the system passes through each spatial point ϕ with the
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same speed as in the direct motion. Since changing the sign of the velocity
(ϕ̇ → −ϕ̇) is the same as changing the sign of time (t → −t), this property
of a conservative system is also referred to as the symmetry of time reversal.

The additional symmetry of the phase trajectories of the conservative
pendulum about the vertical ϕ̇-axis (with respect to the change ϕ → −ϕ)
follows from the symmetry of its potential well: Epot(−ϕ) = Epot(ϕ). (Unlike
the symmetry about the ϕ-axis, this additional symmetry is not a property
of all conservative systems.)

When we include friction in our model, motion of the pendulum becomes
irreversible, and the discussed above symmetry of its phase trajectories with
respect to reflections in the coordinate axes of the phase plane vanishes. The
influence of friction on the phase portrait we discuss below (section 7).

The angles ϕ and ϕ ± 2π, ϕ ± 4π, . . . denote the same position of the
pendulum and thus are equivalent (the angle of deflection ϕ is a cyclic vari-
able). Thus it is sufficient to consider only a part of the phase plane, e.g.,
the part enclosed between the vertical lines ϕ = −π and ϕ = π (see Fig. 1).
The cyclic motion of the pendulum in the phase plane is then restricted to
the region lying between these vertical lines. We can identify these lines
and assume that when the representative point leaves the region crossing the
right boundary ϕ = π, it enters simultaneously from the opposite side at the
left boundary ϕ = −π (for a counterclockwise rotation of the pendulum).

We can imagine the two-dimensional phase space of a rigid pendulum
not only as a part of the plane (ϕ, ϕ̇) enclosed between the vertical lines
ϕ = +π and ϕ = −π, but also as a continuous surface. We may do so
because opposing points on these vertical lines have the same value of ϕ̇ and
describe physically equivalent mechanical states. And so, taking into account
the identity of the mechanical states of the pendulum at these points and the
periodicity of the dependence of the restoring gravitational torque on ϕ, we
can cut out this part of the phase plane and roll it into a cylinder so that the
bounding lines ϕ = +π and ϕ = −π are joined. We can thus consider the
surface of such a cylinder as the phase space of a rigid pendulum. A phase
curve circling around the cylinder corresponds to a nonuniform rotational
motion of the pendulum.

6 Limiting Motion along the Separatrix

The phase trajectory corresponding to a total energy E which is equal to
the maximal possible potential energy, namely Epot(π) = 2mga, is of special
interest. It separates the central region of the phase plane which is occupied
by the closed phase trajectories of oscillations from the outer region, occupied
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by the phase trajectories of rotations. This boundary is called the separatrix.
In Fig. 1 it is singled out by a thick line. The separatrix divides the phase
plane of a conservative pendulum into regions which correspond to different
types of motion. The equation of the separatrix follows from Eq. (8) by
setting E = 2mga, or from Eq. (9) by setting E = 4E0 = 2Jω2

0:

ϕ̇ = ±2ω0 cos(ϕ/2). (11)

The limiting motion of a conservative pendulum with total energy E =
2mga is worth a more detailed investigation. In this case the representative
point in the phase plane moves along the separatrix.

When the pendulum with the energy E = 2mga approaches the inverted
position at ϕ = π or ϕ = −π, its velocity approaches zero, becoming zero at
ϕ = ±π. This state is represented in the phase plane by the saddle points
ϕ = π, ϕ̇ = 0 and ϕ = −π, ϕ̇ = 0 where the upper and lower branches of
the separatrix, Eq. (11), meet on the ϕ-axis. Both these points represent
the same mechanical state of the system, that in which the pendulum is at
rest in the unstable inverted position. The slightest initial displacement of
the pendulum from this point to one side or the other results in its swinging
with an amplitude which almost equals π, and the slightest initial push causes
rotational motion (revolution) of the pendulum in a full circle. With such
swinging, or with such rotatation, the pendulum remains in the vicinity of
the inverted position for an extended time.

For the case of motion along the separatrix, i.e., for the motion of the
pendulum with total energy E = 2mga = 4E0, there exist an analytical
solution (in elementary functions) for the angle of deflection ϕ(t) and for
the angular velocity ϕ̇(t). Integration of the differential equation Eq. (11)
with respect to time (for the positive sign of the root) at the initial condition
ϕ(0) = 0 yields:

− ω0t = ln tan[(π − ϕ)/4], (12)

and we obtain the following expression for ϕ(t):

ϕ(t) = π − 4 arctan(e−ω0t). (13)

This solution describes a counterclockwise motion beginning at t = −∞
from ϕ = −π. At t = 0 the pendulum passes through the bottom of its circu-
lar path, and continues its motion until t = +∞, asymptotically approaching
ϕ = +π. A graph of ϕ(t) for this motion is shown in Fig. 2.

The second solution which corresponds to the clockwise motion of the
pendulum (to the motion along the other branch of the separatrix in the
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Figure 2: The graphs of ϕ and ϕ̇ for the limiting motion (total energy E =
2mga = 4E0).

phase plane) can be obtained from Eq. (13) by the transformation of time
reversal, i.e., by the change t→ −t. Solutions with different initial conditions
can be obtained from Eq. (13) simply by a shift of the time origin (by the
substitution of t− t0 for t).

To obtain the time dependence of the angular velocity ϕ̇(t) for the limiting
motion of the pendulum, we can express cos(ϕ/2) from Eq. (13) as:

cos(ϕ/2) =
1

cosh(ω0t)
,

and after substitution of this value into Eq. (11), we find:

ϕ̇(t) = ± 2ω0

cosh(ω0t)
= ± 4ω0

(eω0t + e−ω0t)
. (14)

A graph of ϕ̇(t) is also shown in Fig. 2. The graph of this function has the
form of an isolated impulse. The characteristic width of its profile, i.e., the
duration of such a solitary impulse, is of the order of 1/ω0. Consequently, the
time needed for the pendulum to execute almost all of its circular path, from
the vicinity of the inverted position through the lowest point and back, has
the order of magnitude of one period of small free oscillations, T = 2π/ω0.
The wings of the profile decrease exponentially as t → ±∞. Actually, for
large positive values of t, we may neglect the second term exp(−ω0t) in the
denominator of Eq. (14), and we find that:

ϕ̇(t) ≈ ±4ω0e
−ω0t. (15)

Thus, in the limiting motion of the representative point along the sepa-
ratrix, when the total energy E is exactly equal to the height 2mga of the
potential barrier, the speed of the pendulum decreases steadily as it nears
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the inverted position of unstable equilibrium. The pendulum approaches the
inverted position asymptotically, requiring an infinite time to reach it.

The mathematical relationships associated with the limiting motion of
a pendulum along the separatrix play an important role in the theory of
solitons.

7 Period of Large Oscillations and Revolu-

tions

If the energy differs from the critical value 2mga, the motion of the pendulum
in the absence of friction (swinging at E < 2mga or rotation at E > 2mga)
is periodic. The period T of such a motion the greater the closer the energy
E to 2mga. Figure 3 gives the dependence of the period on the total energy
T (E). (The energy is measured in units of the maximal potential energy
2mga.)

Figure 3: The period versus total energy.

The initial almost linear growth of the period with E corresponds to the
approximate formula, Eq. (6). Indeed, Eq. (6) predicts a linear dependence of
T on ϕ2

m, and for small amplitudes ϕm the energy is proportional to the square
of the amplitude. When the energy approaches the value 2mga, the period
grows infinitely. Greater values of the energy correspond to the rotating
pendulum. The period of rotation decreases with the energy. The asymptotic
behavior of the period at E � 2mga can be found as follows.

When the total energy E of the pendulum is considerably greater than the
maximal value 2mga of its potential energy, we can assume all the energy
of the pendulum to be the kinetic energy of its rotation. In other words,
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we can neglect the influence of the gravitational field on the rotation and
consider this rotation to be uniform. The angular velocity of this rotation is
approximately equal to the angular velocity Ω received by the pendulum at
the initial excitation. The period T of rotation is inversely proportional to
the angular velocity of rotation: T = 2π/Ω. So for E = JΩ2/2 � 2mga the
asymptotic dependence of the period on the initial angular velocity is the
inverse proportion: T ∝ 1/Ω.

To find the dependence T (Ω) more precisely, we need to take into account
the variations in the angular velocity caused by gravitation. The angular
velocity of the pendulum oscillates between the maximal value Ω in the lower
position and the minimal value Ωmin in the upper position. The latter can
be found from the conservation of energy:

Ωmin =
√

Ω2 − 4ω2
0 ≈ Ω

(
1− 2

ω2
0

Ω2

)
.

For rapid rotation we can assume these oscillations of the angular velocity
to be almost sinusoidal. Then the average angular velocity of rotation is
approximately the half-sum of its maximal and minimal values:

Ωav ≈ (Ω + Ωmin)/2 = Ω(1− ω2
0/Ω

2),

and the period of rotation is:

T (Ω) =
2π

Ωav

≈ T0
ω0

Ω

(
1 +

ω2
0

Ω2

)
.

However, the most interesting peculiarities are revealed if we investigate
the dependence of the period on energy in the vicinity of Emax = 2mga.

Measuring the period of oscillations for the amplitudes 179.900◦, 179.990◦,
and 179.999◦ successively, we see that duration of the impulses on the graph of
the angular velocity very nearly remains the same, but the intervals between
them become longer as the amplitude approaches 180◦: Experimental values
of the period T of such extraordinary oscillations are respectively 5.5 T0,
6.8 T0, and 8.3 T0.

It is interesting to compare the motions for two values of the total energy
E which differ slightly from Emax on either side by the same amount, i.e., for
E/Emax = 0.9999 and E/Emax = 1.0001. In the phase plane, these motions
occur very near to the separatrix, the first one inside and the latter outside
of the separatrix. The inner closed curve corresponds to oscillations with the
amplitude 178.9◦. Measuring the periods of these motions, we obtain the
values 3.814 T0 and 1.907 T0 respectively. That is, the measured period of
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these oscillations is exactly twice the period of rotation, whose phase curve
adjoins the separatrix from the outside.

The graphs of ϕ(t) and ϕ̇(t) for oscillations and revolutions of the pen-
dulum whose energy equals Emax ∓∆E are shown respectively in the upper
and lower parts of Fig. 4.

Figure 4: The graphs of ϕ(t) and ϕ̇(t) for the pendulum excited at ϕ = 0 by
imparting the initial angular velocity of ϕ̇ = 2ω0(1∓ 10−6).

Next we suggest a theoretical approach which can be used to calculate
the period of oscillations and revolutions with E ≈ 2mga.

From the simulation experiments we can conclude that during the semi-
circular path, from the equilibrium position up to the extreme deflection or
to the inverted position, both of the motions shown in Fig. 4 almost coincide
with the limiting motion (Fig. 2). These motions differ from the limiting mo-
tion appreciably only in the immediate vicinity of the extreme point or near
the inverted position: In the first case the pendulum stops at this extreme
point and then begins to move backwards, while in the limiting motion the
pendulum continues moving for an unlimited time towards the inverted po-
sition; in the second case the pendulum reaches the inverted position during
a finite time.

For the oscillatory motion under consideration, the representative point in
the phase plane generates a closed path during one cycle, passing along both
branches of the separatrix. In this motion the pendulum goes twice around
almost the whole circle, covering it in both directions. On the other hand,
executing rotation, the pendulum makes one circle during a cycle of revolu-
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tions, and the representative point passes along one branch of the separatrix
(upper or lower, depending on the direction of rotation). To explain why the
period of these oscillations is twice the period of corresponding revolutions,
we must show that the motion of the pendulum with energy E = 2mga−∆E
from ϕ = 0 up to the extreme point requires the same time as the motion
with the energy E = 2mga + ∆E from ϕ = 0 up to the inverted vertical
position.

Almost all of both motions occurs very nearly along the same path in
the phase plane, namely, along the separatrix from the initial point ϕ = 0,
ϕ̇ ≈ 2ω0 up to some angle ϕ0 whose value is close to π. To calculate the time
interval required for this part of the motion, we can assume that the motion
(in both cases) occurs exactly along the separatrix, and take advantage of
the corresponding analytical solution, expressed by Eq. (13).

Assuming ϕ(t) in Eq. (13) to be equal to ϕ0, we can find the time t0
during which the pendulum moves from the equilibrium position ϕ = 0 up
to the angle ϕ0 (for both cases):

ω0t0 = − ln tan
π − ϕ0

4
= − ln tan

α0

4
, (16)

where we have introduced the notation α0 = π − ϕ0 for the angle that the
rod of the pendulum at ϕ = ϕ0 forms with the upward vertical line. When
ϕ0 is close to π, the angle α0 is small, so that in Eq. (16) we can assume
tan(α0/4) ≈ α0/4, and ω0t0 ≈ ln(4/α0).

Later we shall consider in detail the subsequent part of motion which
occurs from this arbitrarily chosen angle ϕ = ϕ0 towards the inverted posi-
tion, and prove that the time t1 required for the pendulum with the energy
2mga + ∆E (rotational motion) to reach the inverted position ϕ = π equals
the time t2 during which the pendulum with the energy 2mga − ∆E (os-
cillatory motion) moves from ϕ0 up to its extreme deflection ϕm, where the
angular velocity becomes zero, and the pendulum begins to move backwards.

When considering the motion of the pendulum in the vicinity of the in-
verted position, we find it convenient to define its position (instead of the
angle ϕ) by the angle α of deflection from this position of unstable equilib-
rium. This angle equals π − ϕ, and the angular velocity α̇ equals −ϕ̇. The
potential energy of the pendulum (measured relative to the lower equilibrium
position) depends on α in the following way:

Epot(α) = mga(1 + cos α) ≈ 2mga(1− 1

4
α2). (17)

The latter expression is valid only for relatively small values of α, when the
pendulum moves near the inverted position. Phase trajectories of motion
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with energies E = 2mga ±∆E near the saddle point ϕ = π, ϕ̇ = 0 (in the
new variables α = 0, α̇ = 0) can be found from the conservation of energy
using the approximate expression (17) for the potential energy:

1

2
Jα̇2 +

1

2
mgaα2 = ±∆E, or

α̇2

ω2
0

− α2 = ±4ε. (18)

Here we use the notation ε = ∆E/Emax = ∆E/(2mga) for the small (ε� 1)
dimensionless quantity characterizing the fractional deviation of energy E
from its value Emax for the separatrix. It follows from Eq. (18) that phase
trajectories near the saddle point are hyperbolas whose asymptotas are the
two branches of the separatrix that meet at the saddle point. Part of the
phase portrait near the saddle point is shown in Figure 5. The curve 1 for
the energy E = 2mga+∆E corresponds to the rotation of the pendulum. It
intersects the ordinate axis when the pendulum passes through the inverted
position. The curve 2 for the energy E = 2mga−∆E describes the oscillatory
motion. It intersects the abscissa axis at the distance αm = π−ϕm from the
origin. This is the point of extreme deflection in the oscillations.

Figure 5: Phase curves near the saddle point.

For α � 1 the torque of the gravitational force is approximately propor-
tional to the angle α, but in contrast to the case of stable equilibrium, the
torque N = −dEpot(α)/dα = mgaα tends to move the pendulum farther
from the position α = 0 of unstable equilibrium. Substituting the torque
N in the law of rotation of a solid, we find the differential equation of the
pendulum valid for its motion near the point α = 0:

J α̈ = mga α, or α̈− ω2
0α = 0. (19)

The general solution of this linear equation can be represented as a su-
perposition of two exponential functions of time t:
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α(t) = C1e
ω0t + C2e

−ω0t. (20)

Next we consider separately the two cases of motion with the energies
E = Emax ±∆E.

1. Rotational motion (E = Emax + ∆E) along the curve 1 from α0 up to
the intersection with the ordinate axis. Let t = 0 be the moment of crossing
the inverted vertical position: α(0) = 0. Hence in Eq. (20) C2 = −C1. Then
from Eq. (18) α̇(0) = 2

√
εω0, and C1 =

√
ε. To determine duration t1 of the

motion, we assume in Eq. (20) α(t1) = α0:

α0 =
√

ε(eω0t1 − e−ω0t1) ≈
√

εeω0t1 .

(We can choose here an arbitrary value α0, although a small one, to be large
compared to

√
ε, so that the condition e−ω0t1 � eω0t1 is fulfilled). Therefore

ω0t1 = ln(α0/
√

ε).
2. Oscillatory motion (E = Emax−∆E) along the curve 2 from α0 up to

the extreme point αm. Let t = 0 be the moment of maximal deflection, when
the phase curve intersects the abscissa axis: α̇(0) = 0. Hence in Eq. (20)
C2 = C1. Then from Eq. (18) α(0) = αm = 2

√
ε, and C1 =

√
ε. To determine

duration t2 of this motion, we assume in Eq. (20) α(t2) = α0. Hence

α0 =
√

ε(eω0t2 + e−ω0t2) ≈
√

εeω0t2 ,

and we find ω0t2 = ln(α0/
√

ε).
We see that t2 = t1 if ε = ∆E/Emax is the same in both cases. Therefore

the period of oscillations is twice the period of rotation for the values of energy
which differ from the critical value 2mga on both sides by the same small
amount ∆E. Indeed, we can assume with great precision that the motion
from ϕ = 0 up to ϕ0 = π − α0 lasts the same time t0 given by Eq. (16),
since these parts of both phase trajectories very nearly coincide with the
separatrix. In the case of rotation, the remaining motion from ϕ0 up to the
inverted position also lasts the same time as, in the case of oscillations, does
the motion from ϕ0 up to the utmost deflection ϕm, since t1 = t2.

The period of rotation Trot is twice the duration t0 + t1 of motion from
the equilibrium position ϕ = 0 up to the ϕ = π. Using the above value for
t1 and Eq. (16) for t0, we find:

Trot = 2(t0 + t1) =
2

ω0

ln
4√
ε

=
1

π
T0 ln

4√
ε
.

We note that an arbitrarily chosen angle α0 (however,
√

ε � α0 � 1),
which delimits the two stages of motion (along the separatrix, and near
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the saddle point in the phase plane), falls out of the final formula for the
period (when we add t0 and t1). The period of revolutions tends to infinity
when ε → 0, that is, when the energy tends to its critical value 2mga.
For ε = 0.0001 (for E = 1.0001Emax) the above formula gives the value
Trot = 1.907 T0, which coincides with the cited experimental result.

The period of oscillations T is four times greater than the duration t0 + t2
of motion from ϕ = 0 up to the extreme point ϕm:

T = 4(t0 + t2) =
4

ω0

ln
4√
ε

=
2

π
T0 ln

8

αm

.

For αm � 1 (ϕm ≈ π) this formula agrees well with the experimental
results: it yields T = 5.37 T0 for ϕm = 179.900◦, T = 6.83 T0 for ϕm =
179.990◦, and T = 8.30 T0 for ϕm = 179.999◦. From the obtained expressions
we see how both the period of oscillations T and the period of rotation Trot

tend to infinity as the total energy approaches Emax = 2mga.
As the total energy is changed so as to approach the value 2mga from

below, the period of oscillations sharply increases and tends logarithmically
to infinity. The shape of the curve of angular velocity versus time resembles
a periodic succession of solitary impulses whose duration is close to the pe-
riod T0 of small oscillations (see Fig. 4.). Time intervals between successive
impulses are considerably greater than T0.

These intervals grow longer and longer as the total energy E is changed
so as to approach the maximal allowed potential energy 2mga. The phase
trajectory of the motion becomes closer and closer to the separatrix from the
inside. Executing such swinging, the pendulum moves very rapidly through
the bottom of its circular path and very slowly at the top, in the vicinity of
the extreme points.

As the extreme angular displacement approaches 180◦, the pendulum
spends the greater part of its period near the inverted position, and so the
potential energy of the pendulum is close to its maximal value 2mga most
of the time. Only for the brief time during which the pendulum rotates
rapidly through the bottom part of its circular path is the potential energy
converted into kinetic energy. Hence the time average value of the potential
energy during a complete cycle of this motion is considerably greater than
the time average value of the kinetic energy, in contrast to the case of small
oscillations, for which the time average values of potential and kinetic energies
are equal.
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8 The Mean Energies

In the motion under consideration (swinging or rotation with E ≈ 2mga)
both potential and kinetic energies oscillate between zero and the same max-
imal value, which is equal to the total energy E ≈ 2mga. However, during
almost all the period the pendulum moves very slowly in the vicinity of the
inverted position, and during this time its potential energy has almost the
maximal value 2mga = 2Jω2

0. Only for a short time, when the pendulum
passes rapidly along the circle and through the bottom of the potential well,
is the potential energy of the pendulum converted into kinetic energy. Hence,
on the average, the potential energy predominates.

We can estimate the ratio of the averaged over a period values of the
potential and kinetic energies if we take into account that most of the time
the angular velocity of the pendulum is nearly zero, and for a brief time of
motion the time dependence of ϕ(t) is very nearly the same as it is for the
limiting motion along the separatrix. Therefore we can assume that during
an impulse the kinetic energy depends on time in the same way it does in the
limiting motion. This assumption allows us to extend the limits of integration
to ±∞. Since two sharp impulses of the angular velocity (and of the kinetic
energy) occur during the period T of oscillations, we can write:

〈Ekin〉 =
J

T

∫ ∞
−∞

ϕ̇2(t)dt =
J

T

∫ π

−π
ϕ̇(ϕ)dϕ.

The integration with respect to time is replaced here with an integration over
the angle. The mean kinetic energy 〈Ekin〉 is proportional to the area S of the
phase plane bounded by the separatrix: 2〈Ekin〉 = JS/T . We can substitute
for ϕ̇(ϕ) its expression from the equation of the separatrix, Eq. (11):

〈Ekin〉 =
J

T
2ω0

∫ π

−π
cos

ϕ

2
dϕ =

4

π
Jω2

0

T0

T
.

Taking into account that the total energy E for this motion approximately
equals 2mga = 2Jω2

0, and Epot = E − Ekin, we find:

〈Epot〉
〈Ekin〉

=
2Jω2

0

〈Ekin〉
− 1 =

π

2

T

T0

− 1.

For ϕm = 179.99◦ the period T equals 6.83 T0, and so the ratio of mean
values of potential and kinetic energies is 9.7 (compare with the case of small
oscillations for which these mean values are equal).

9 The Influence of Friction

In the presence of weak friction inevitable in any real system, the phase
portrait of the pendulum changes qualitatively: The phase curves have a
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different topology (compare Figures 6 and 1). A phase trajectory representing
the counterclockwise rotation of the pendulum sinks lower and lower toward
the separatrix with each revolution. The phase curve which passed formerly
along the upper branch of the separatrix does not reach now the saddle point
(π, 0). Instead it begins to wind around the origin, gradually approaching
it. Similarly, the lower branch crosses the abscissa axis ϕ̇ = 0 to the right of
the saddle point (−π, 0), and also spirals towards the origin.

Figure 6: Phase portrait with friction.

The closed phase trajectories corresponding to oscillations of a conser-
vative system are transformed by friction into shrinking spirals which wind
around a focus located at the origin of the phase plane. Near the focus the
size of gradually shrinking loops diminishes in a geometric progression. This
focus represents a state of rest in the equilibrium position, and is an attrac-
tor of the phase trajectories. That is, all phase trajectories of the damped
pendulum spiral in toward the focus, forming an infinite number of loops, as
in Figure 7, a.

Figure 7: Phase portrait of a damped (a) and of an overdamped (γ > ω0, b)
pendulum.

When friction is relatively strong (γ > ω0), the motion is non-oscillatory,
and the attractor of the phase trajectories, instead of a focus, becomes a
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node: all phase trajectories approach this node directly, without spiraling.
The phase portrait of an overdamped pendulum (γ = 1.05 ω0) is shown in
Figure 7,b.

When friction is weak, we can make some theoretical predictions for the
motions whose phase trajectories pass close to the separatrix. For example,
we can evaluate the minimal value of the initial velocity which the pendulum
must be given in the lower (or some other) initial position in order to reach
the inverted position, assuming that the motion occurs along the separatrix,
and consequently that the dependence of the angular velocity on the angle of
deflection is approximately given by the equation of the separatrix, Eq. (11).

Figure 8: Revolution and subsequent oscillation of the pendulum with fric-
tion (Q = 20) excited from the equilibrium position with an initial angular
velocity of Ω = 2.3347 ω0.

The frictional torque is proportional to the angular velocity: Nfr =
−2γJϕ̇. Substituting the angular velocity from Eq. (11), we find

Nfr = ∓4γJω0 cos
ϕ

2
= ∓2mga

Q
cos

ϕ

2
.

Hence the work Wfr of the frictional force during the motion from an initial
point ϕ0 to the final inverted position ϕ = ±π is:

Wfr =
∫ ±π

ϕ0

Nfrdϕ = −4
mga

Q

(
1∓ sin

ϕ0

2

)
. (21)

The necessary value of the initial angular velocity Ω can be found with
the help of the conservation of energy, in which the work Wfr of the frictional
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force is taken into account:
1

2
JΩ2 + mga(1− cos ϕ0) + Wfr = 2mga.

Substituting Wfr from Eq. (21), we obtain the following expression for Ω:

Ω2 = 2ω0

[
1 + cos ϕ0 +

4

Q

(
1∓ sin

ϕ0

2

)]
. (22)

For ϕ0 6= 0 the sign in Eq. (22) depends on direction of the initial angular
velocity. We must take the upper sign if the pendulum moves directly to
the inverted position, and the lower sign if it passes first through the lower
equilibrium position. In other words, at ϕ0 > 0 we must take the upper
sign for positive values of Ω, and the lower sign otherwise. If the pendulum
is excited from the lower equilibrium position (ϕ0 = 0), Eq. (22) yields the
initial velocity to be

Ω = ±2ω0

√
1 + 2/Q ≈ ±2ω0(1 + 1/Q).

The exact value of Ω is slightly greater since the motion towards the
inverted position occurs in the phase plane close to the separatrix but always
outside it, that is, with the angular velocity of slightly greater magnitude.
Consequently, the work Wfr of the frictional force during this motion is a
little larger than the calculated value. For example, for Q = 20 the above
estimate yields Ω = ±2.1ω0, while the more precise value of Ω determined
experimentally by trial and error is ±2.10096 ω0.

Figure 8 shows the graphs of ϕ(t) and ϕ̇(t) and the phase trajectory for a
similar case in which the initial angular velocity is chosen exactly to let the
pendulum reach the inverted position after a revolution.

Supplement: Review of the Principal Formulas

The differential equation of motion of a rigid pendulum is:

ϕ̈ + 2γϕ̇ + ω2
0 sin ϕ = 0,

where ω0 is the frequency of small free oscillations:

ω2
0 = mga/J = g/l; l = J/ma.

Here m is the mass of the pendulum, a is the distance between the horizontal
axis of rotation (the point of suspension) and the center of mass, J is the
moment of inertia about the same axis, l is the reduced length of the physical
pendulum, and g is the acceleration of gravity.
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The equation of a phase trajectory in the absence of friction is:

ϕ̇2

ω2
0

+ 2(1− cos ϕ) =
E

E0

,

where E is the total energy, and

E0 =
1

2
Jω2

0 =
1

2
mga =

1

4
(Epot)max.

Here (Epot)max = 2mga is the maximal possible value of the potential energy
of the pendulum, which is its potential energy when it is in the inverted
vertical position.

The equation of the separatrix in the phase plane is:

ϕ̇ = ±2ω0 cos(ϕ/2).

The angular deflection and angular velocity for the motion of the pendulum
which generates the separatrix in the phase plane are:

ϕ(t) = π − 4 arctan(e−ω0t), ϕ̇(t) = ± 2ω0

cosh(ω0t)
. = ± 4ω0

(eω0t + e−ω0t)
.
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