
Free Oscillations of Linear Oscillator –
Problems

Summary of the Principal Formulas

The differential equation of a free linear torsion oscillator:

ϕ̈ + 2γϕ̇ + ω2
0ϕ = 0.

The frequency and the period of free oscillations without friction (at γ ¿ ω0):

ω0 =

√
D

J
, T0 =

2π

ω0

.

An oscillatory solution (valid at γ < ω0):

ϕ(t) = A0e
−γt cos(ω1t + δ0),

where the constants A0 and δ0 are determined by the initial conditions ϕ(0), ϕ̇(0).
The frequency ω1 of damped oscillations

ω1 =
√

ω2
0 − γ2.

An equivalent form of the general solution:

ϕ(t) = e−γt(C cos ω1t + S sin ω1t),

where the constants C and S are determined by the initial conditions. They are
related to A0 and δ0:

A0 =
√

C2 + S2, tan δ0 = −S/C.

In the case of weak damping (γ ¿ ω0)

ω1 ≈ ω0 − γ2/(2ω0).

1



The decay time (during which the amplitude is reduced by the factor e ≈ 2.72):

τ = 1/γ.

A non-oscillatory motion at γ = ω0:

ϕ(t) = (C1t + C2)e
−γt.

The quality factor Q of an oscillator:

Q = π
τ

T0

=
ω0

2γ
.

The number of oscillations, during which the amplitude is halved:

N1/2 =
ln 2

π
Q = 0.22 Q =

Q

4.53
.

The total mechanical energy of the oscillator consists of elastic potential energy
of the strained spring and kinetic energy of the flywheel:

E = Epot + Ekin =
1

2
Dϕ2 +

1

2
Jϕ̇2.

The values of the potential energy and kinetic energy of the oscillator, averaged
over a cycle, equal one another, each of them constituting one half the total energy:

〈Epot〉 = 〈Ekin〉 =
1

2
E =

1

4
DA2

0 =
1

4
Jω2

0A
2
0.

1 Free Undamped Oscillations
1.1 The Initial Conditions and the Shape of the Plots.
In the absence of friction a linear oscillator executes simple harmonic mo-

tion, which is characterized by purely sinusoidal time dependence of the angular
displacement and of the angular velocity.

(a) What initial conditions give rise to oscillations of cosine time dependence,
of sine time dependence? Suppose that you want to get oscillations with the angu-
lar amplitude of 90◦. What initial angular displacement ϕ(0) = ϕ0 at zero initial
angular velocity ϕ̇(0) = 0 ensures the desired amplitude?

(b) What initial angular velocity ϕ̇(0) = Ω ought you to impart to the oscil-
lator, at rest in the equilibrium position, in order to obtain the same amplitude of
90◦? Remember, that the initial angular velocity Ω must be expressed for input in
units of the natural frequency ω0. Verify your answer with a computer experiment,
using the appropriate initial conditions.
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1.2 Maximal Deflection and Conservation of Energy. Imagine exciting an
oscillator initially at rest in the equilibrium position by a push which produces an
initial angular velocity Ω = 2ω0.

(a) Calculate the angle ϕmax of maximal deflection using the law of the con-
servation of energy.

(b) Verify your result experimentally. Note that the simulation program per-
forms the numerical integration of the differential equation independently of con-
servation laws, such as the conservation of energy. That is, these laws are not used
in the program.

1.3 The Phase Trajectory and the Initial Conditions. Compare the motion
of the representative point along the phase trajectory of a conservative oscillator
with the time-dependent plots of the angle of deflection and of the angular veloc-
ity.

(a) How is the phase trajectory changed if you change the initial conditions?
(b) Does the direction of the motion of the representative point along the phase

trajectory depend on the initial conditions?
(c) Is it possible that phase trajectories for different initial conditions coincide?

If so, formulate the requirements for the coincidence.

1.4 Elliptical and Circular Shape of the Phase Trajectory.
(a) Prove analytically that the phase trajectory of a conservative linear oscil-

lator is an ellipse with its center at the origin of the phase plane. What are the
semiaxes of the ellipse?

(b) Show that the elliptical shape of the phase diagram of a conservative linear
oscillator follows immediately from the law of the conservation of the energy.

(c) What scale on the axis of the ordinate (the angular velocity axis) of the
phase plane produces a circular phase trajectory?

(d) Does the time interval during which the representative point passes along
one loop of the phase trajectory depend on the initial conditions?

1.5 The Phase Diagram and Energy Transformations. Compare the phase
trajectory with the plot of potential energy versus the angle of deflection. The
positioning of plots on the display screen (if you open the window “Phase dia-
gram”) is convenient for such comparison. Pay special attention to the positions
of the extreme points on the phase trajectory and in the parabolic potential well.
For the initial conditions ϕ(0) = ϕ0, ϕ̇(0) = Ω, what are the values of the po-
tential energy and the kinetic energy at the extreme points and at the equilibrium
position?

What are the extreme deflection ϕmax and the maximal angular velocity ωmax

of the flywheel?
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1.6 The Shape and the Frequency of Energy Oscillations. Consider the
plots of the time dependence of kinetic energy and potential energy.

(a) What can you say about their maximal and average values? Compare these
plots with the plots of the angular displacement and the angular velocity.

(b) At what frequency do the oscillations of each kind of energy occur? What
are the limits (the extreme values) and the mean (averaged over a period) values
of each kind of energy in these oscillations?

1.7 The Phase Trajectories with the Same Energy. Consider the oscillations
of a conservative oscillator at different initial conditions but with the same total
energy. What differences do you observe in the plots and the phase trajectories in
these cases?

1.1 Damped Free Oscillations
2.1 The Sequence of Maximal Deflections. Under the action of a weak force

of viscous friction, the sequence of maximal deflections of a free, damped linear
oscillator forms a decreasing geometric progression: each consecutive maximal
deflection is smaller than the preceding one by the same factor, exp(−γT0) ≈
1− γT0.

(a) Calculate the value of the quality factor Q at which the amplitude halves
during every two complete oscillations.

(b) Input this value in a computer experiment and verify the theoretically pre-
dicted constant ratio of successive maximal deflections. Note that this ratio does
not depend on the initial conditions.

(c) Evaluate the increment of the period of oscillations at this value of the
quality factor with respect to the period T0 in the absence of friction (in percent).
Can you detect the increment in the simulation experiment? The marks on the
time axis correspond to integer numbers of periods T0 = 2π/ω0 without friction.

2.2∗ Maximal Deflection after an Initial Push. Imagine, that we excite
oscillations with an initial push which imparts an initial angular velocity of 2ω0 to
the flywheel in its equilibrium position.

(a) Calculate the first maximal deflection of the flywheel for the quality factor
Q = 5.

(b) What will be the value of the subsequent extreme deflection which occurs
in the direction opposite to the first? Verify your answers.

2.3∗∗ Complex Initial Conditions.
(a) Let the initial deflection of the torsion pendulum be 155 degrees, and the

initial angular velocity be 2ω0. The quality factor Q = 5. Calculate the maximal
deflection of the flywheel.
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(b) With the same initial deflection (155 degrees) and the same quality fac-
tor Q = 5 as in the preceding item (a), calculate the maximal deflection of the
flywheel, if the initial angular velocity equals −2ω0.

(c) Let the initial deflection of the torsion pendulum be −155 degrees. What
initial angular velocity would ensure the maximal deflection of 155 degrees (to
the opposite side), if the quality factor Q = 20?

2.4∗ The Phase Trajectory of Damped Oscillations. The phase trajectory of
damped free oscillations for Q > 0.5 is a spiral which makes an infinite number
of gradually shrinking loops around the focus located at the origin of the phase
plane. This focus corresponds to the state of rest in the equilibrium position, and
the phase trajectory approaches it asymptotically.

(a) How does the radius of these loops change while the curve approaches the
focus?

(b) Does the time interval during which the representative point makes one
revolution of the spiral change as the loops of the curve shrink?

2.5∗ The Dissipation of Energy. Compare the transformation of potential
energy into kinetic energy (and vice versa) for free undamped oscillations in the
absence of friction with that for free damped oscillations in the presence of viscous
friction.

(a) Show, using a simulation experiment, that if Q = 18.1, the amplitude is
halved during four complete oscillations and the total energy is halved during two
complete oscillations.

(b) Why is the dissipation of mechanical energy nonuniform during one cycle
of oscillations? At what instants during a cycle is the time-rate of energy dissipa-
tion greatest and at what instants is it smallest?

1.2 Non-oscillatory Motion of the Pendulum
When viscous friction is strong (Q ≤ 0.5), a disturbed system returns to the equi-
librium position without oscillating. In the computer simulation, the needle as-
ymptotically approaches the zero point from one side.

3.1∗ Non-oscillatory Motion at Critical Damping. Consider the case of
critical damping, γ = ω0.

(a) Why is critical damping preferable in measuring instruments using a needle
as an indicator? How might your answer apply to the suspension system in an
automobile?

Show that the value of Q in the case of critical damping is 0.5.
(b) Calculate the maximal angle of deflection if the system, with Q = 0.5,

receives an initial velocity Ω = 5ω0 in the equilibrium position.
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(c) In what lapse of time does the needle move towards this extreme point?
Verify your answers by simulating the experiment on the computer. Note that

the needle approaches the equilibrium position from one side—it does not cross
the zero point of the dial.

3.2 Critical Damping.
(a) Prove that the value Q = 0.5 (γ = ω0) is really critical. Do so by showing

that at slightly greater values of Q, the needle of a perturbed oscillator executes
heavily damped oscillations, slowly moving to and fro across the zero point of the
dial. (Sound ticks at crossing the zero point may help you).

(b) For a critically damped system, express the constants C1 and C2 in the
general solution ϕ(t) = (C1t+C2) exp(−γt) of the differential equation in terms
of the initial displacement ϕ(0) = ϕ0 and the initial angular velocity ϕ̇(0) = Ω0.

(c) Is it possible for a critically damped system to move after an initial distur-
bance according to pure exponential law? If so, what initial conditions give rise
to such motion? What is the phase trajectory of this motion? Prove your answers
experimentally.

(d) At what initial conditions the flywheel of a disturbed critically damped
system will cross the equilibrium position? For a given initial displacement ϕ0,
what initial angular velocity Ω should you impart to the flywheel of the critically
damped oscillator in order it crossed the equilibrium position after a lapse of time
t = 3T0, where T0 = 2π/ω0 is the natural period (the period of oscillations in the
absence of friction)?

3.3∗ Motion of an Overdamped System.
(a) For arbitrary initial conditions (ϕ(0) = ϕ0, ϕ̇(0) = Ω0), express the values

of arbitrary constants in the general solution of the differential equation for an
overdamped system in terms of ϕ0 and Ω0.

(b) At what initial conditions the motion of an overdamped system will be
described by a monoexponential function of time? What are the phase trajectories
that correspond to such motions?

(c) Explain, why at arbitrary initial conditions non-oscillatory motion of the
flywheel towards the equilibrium position occurs more slowly and requires more
time than at critical damping. Is it possible for an overdamped system to return
to the equilibrium position faster than for the critically damped system with the
same ω0? If so, what conditions of excitation ensure the motion?

(d) What is the principal difference between the phase trajectories correspond-
ing to a non-oscillatory motion and those corresponding to damped oscillations?

(e) Is it possible for an overdamped system (γ > ω0) to cross the equilibrium
position after excitation? If so, what initial conditions give rise to such motion?
Is it possible for the oscillator to cross the equilibrium position more than once?
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