
Free Oscillations and Rotations
of a Rigid Pendulum – Problems

Summary of the Principal Formulas

The differential equation of motion of a rigid pendulum is:

ϕ̈ + 2γϕ̇ + ω2
0 sin ϕ = 0,

whereω0 is the frequency of small free oscillations:

ω2
0 = mga/J = g/l; l = J/ma.

Herem is the mass of the pendulum,a is the distance between the horizontal axis
of rotation (the point of suspension) and the center of mass,J is the moment of
inertia about the same axis,l is the reduced length of the physical pendulum, and
g is the acceleration of gravity.

The equation of a phase trajectory in the absence of friction is:

ϕ̇2

ω2
0

+ 2(1− cos ϕ) =
E

E0

,

whereE is the total energy, and

E0 =
1

2
Jω2

0 =
1

2
mga =

1

4
(Epot)max.

Here (Epot)max = 2mga is the maximal possible value of the potential energy
of the pendulum, which is its potential energy when it is in the inverted vertical
position.

The equation of the separatrix in the phase plane is:

ϕ̇ = ±2ω0 cos(ϕ/2).

The angular deflection and angular velocity for the motion of the pendulum which
generates the separatrix in the phase plane are:

ϕ(t) = π − 4 arctan(e−ω0t), ϕ̇(t) = ± 2ω0

cosh(ω0t)
= ± 4ω0

(eω0t + e−ω0t)
.
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1 Small Oscillations of the Pendulum

At small angles of deflection, whensin ϕ ≈ ϕ, the restoring torque of the force
of gravity is approximately proportional to the angle of deflection from the posi-
tion of stable equilibrium, and the pendulum behaves like a linear oscillator. In
the absence of friction it executes simple harmonic motion. In the presence of
weak friction, its motion can be considered as a nearly harmonic oscillation with
a slowly decreasing amplitude.

1.1 The Amplitude, Phase Trajectory, and Energy of Small Oscillations.
Select the case of no friction and use initial conditions which produce oscillations
of a small amplitude. For instance, let the initial deflection be 30◦ and the initial
velocity be zero. In this case the amplitude will be 30◦.

(a) What is the maximal value of the angular velocity in these oscillations?
(b) What initial angular velocity should you give the pendulum initially in the

equilibrium position (ϕ(0) = 0) in order to excite oscillations of the same ampli-
tude (of 30◦)? Calculate the required value of the initial velocity assuming that
small oscillations of the pendulum are approximately sinusiodal. Verify your an-
swer with an experiment. Remember that the initial angular velocity you enter
must be expressed in units of the frequencyω0 of small oscillations. What is the
difference between these oscillations and oscillations excited by an initial deflec-
tion? Improve the required value of the initial angular velocity by using the law
of energy conservation. Verify the improved value with an experiment.

(c) Convince yourself that at small amplitudes the graphs of the angle of de-
flection versus time and of the angular velocity versus time have shapes which
are close to that of a sine curve. Convince yourself also, that oscillations of the
velocity lead in phase the oscillations of the angular displacement by a quarter of
a period.

Compare the graphs of time dependence of the deflection angle and of the
angular velocity with the motion of the representative point along the phase tra-
jectory. What is the form of the phase trajectory for small oscillations? With what
scale along the ordinate axis of the phase plane is the phase trajectory approxi-
mately a circle?

(d) What can you say about the time dependence of the kinetic and potential
energies of the pendulum at small amplitudes? Prove that the time average values
of kinetic and potential energy are approximately equal. If the amplitude equals
30 degrees, what is the ratio of total energyE to the maximal possible value of
potential energyE/Emax?

1.2∗ Period of Small Oscillations.
For graphs of the time dependencies of the angle of deflection and of the an-

gular velocity, the scale shown on the time axis is in the appropriate units for a
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given pendulum, namely in units ofT0 = 2π/ω0 = 2π
√

l/g), which is the period
of small oscillations of the pendulum. That is, the duration between hatch marks
on the time axis isT0.

(a) Note that at small but finite amplitudes (say about 30◦), the period of os-
cillations is a bit longer thanT0. You can make this observation either from the
curves plotted on the screen or from readings of the timer. In the latter case, you
can stop the simulation by clicking theSTART / STOP button at the moment when
the pendulum completes a whole number of cycles. As a convenience in taking
further readings, you may set the timer to zero during a pause in the simulation by
clicking the RESET TIMER button. Try to measure the period (in units ofT0) for
several moderate values of the amplitude.

(b) In performing precise measurements of the period in the simulation ex-
periments, which instants are better for starting and stopping the timer: when the
pendulum passes through the equilibrium position or when it reaches the points
of its greatest deflection? Explain your answer. Keep in mind that your goal is to
measure the period with maximal possible precision.

(c) Compare the measurement of the periodT for a given amplitudeϕ0 ob-
tained from the simulation experiment with the value given by the theoretical ap-
proximation:

T = T0(1 + ϕ2
0/16), (1)

in which the amplitudeϕ0 is expressed in radians. Determine the maximal value
of ϕ0 for which Eq. (1) gives the value ofT to within one percent. Find the error
the formula yields for an amplitude of 45 degrees.

1.3 Damping of Small Oscillations.
(a) Prove theoretically that weak viscous friction causes exponential damping

of small free oscillations. At what value of the quality factorQ does the amplitude
halve during four complete cycles? Input the calculated value ofQ and verify it
in a simulation experiment on the computer.

(b) Convince yourself that for large viscous friction for which the quality fac-
tor Q is less than the critical value of 0.5, a disturbed pendulum returns to the
equilibrium position without swinging. What is the principal qualitative differ-
ence of the phase trajectories for the cases of weak and strong damping?

2 Oscillations with Large Amplitudes

2.1 Comparison of the Pendulum with a Linear Oscillator. For large an-
gular displacements from the equilibrium position, the nonlinearity of the depen-
dence on the angleϕ of the restoring gravitational torque is more apparent. Be-
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causesin ϕ < ϕ, the increase in the restoring torque with increasing angular
deflection is not as large for a pendulum as it is for a linear oscillator. Therefore,
a pendulum is referred to as a nonlinear oscillatory system with a “soft” restoring
force.

(a) How do the differences between a pendulum and a linear oscillator reveal
themselves in graphs of the time dependence of the angular deflection and the an-
gular velocity? How do the differences reveal themselves in the phase trajectory?
Give a qualitative physical explanation for the differences.

(b) What are the differences between the pendulum and a linear oscillator with
respect to energy transformations? Compare the phase trajectory with the graph
of potential energy versus deflection angle. The placing of the graphs on the com-
puter screen (when you check the item “Phase Diagram”) is especially convenient
for such comparison. Pay special attention to the position of the extreme points
on the phase trajectory and on the potential well of the pendulum. For given ini-
tial conditionsϕ(0) = ϕ0, ϕ̇(0) = Ω, what are the values of the potential energy
and kinetic energy of the pendulum at the extreme points and at the equilibrium
position?

2.2∗ Oscillations with Large Amplitudes.
(a) Study experimentally large oscillations of the pendulum in the absence of

friction. Note the exact periodicity of these clearly non-sinusoidal oscillations of
the dynamical variables in the conservative system.

When the amplitude exceeds 90◦, the graph of angular velocity versus time is
nearly a saw-tooth with equilateral triangular teeth. Explain this shape.

The shape of a tooth in the corresponding graph of the angular deflection in
this case is close to a parabola, in contrast to the sinusoidally shaped tooth associ-
ated with oscillations with small amplitudes. Explain this parabolic shape. Note
the increase in the period with increasing amplitude. (Hatch marks on the time
axis are separated byT0, the period of small oscillations.)

(b) Note how the closed phase trajectories of the oscillating pendulum are
stretched horizontally as the energy of the pendulum increases. Explain why these
phase trajectories are different from the elliptical phase trajectories of a linear
oscillator. To do so, use the shapes of the parabolic potential well of a linear
oscillator and the sinusoidal potential well of the pendulum. Assume the curvature
near the bottom to be the same for both potential wells: the periodT0 of small
oscillations of the pendulum should be equal to the period of the linear oscillator.
Remember that the latter period is independent of the energy.

Explain the increase of the period of the pendulum with increasing amplitude,
comparing its potential well with that of a linear oscillator.

(c) At large amplitudes the pendulum passes rapidly through the vicinity of
the equilibrium position (through the sinusoidal bottom of the potential well) and
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slowly climbs up the sinusoidal crest of the well, along its nearly horizontal up-
per slopes; then it slowly descends from them. So on the average the pendulum
remains at large deflections longer than does a linear oscillator, whose parabolic
potential well has steadily increasing slopes. Use the shapes of these potential
wells to explain why, during a cycle, the time average values of the potential and
kinetic energies of a pendulum are not equal to one another while those of the
linear oscillator are.

(d)∗ Study carefully the interesting case of oscillations with an amplitude near
180◦. Set the initial deflection to be 179.999◦, and the initial velocity to be zero.
After remaining near one side of the inverted position for a long time, the pendu-
lum, rapidly passing through the bottom of its path, remains for a long time again
near the other side of the inverted position.

Compare the time during which the pendulum covers almost all its circular
path (except a small vicinity of the extreme positions) with the period of small free
oscillations of the pendulum. In other words, estimate the duration of a solitary
impulse on the graph of angular velocity versus time. Or, equivalently, estimate
the width of the nearly vertical portion of the nearly rectangular saw-tooth graph
of the angular deflection versus time.

(e)∗ Try to discover what factor determines the width of this nearly rectangular
tooth of the graphϕ(t), or, equivalently, what factor determines the time interval
between successive impulses in the graph of angular velocity versus time. That
is, try to discover the physical cause that determines the complete period of these
extraordinary oscillations of the pendulum. (Hint: set the initial deflection of the
pendulum at the successive values 179.999◦, 179.990◦, and 179.900◦, each with
an initial velocity of zero.

(f)∗∗ Try to evaluate theoretically the time interval needed for the pendulum
to reach the extreme deflection of 179.999 degrees at excitation from rest in the
lower stable equilibrium position.

Use your results to estimate the period of oscillations with the amplitude
179.999 degrees. Compare your estimation of the period with the value ofT
obtained in the simulation experiment.

(g) Note the character of energy transformations in the motion considered
above. Total energyE in this motion nearly equals the height2mga of the poten-
tial barrier. It is the value of the potential energy of the pendulum in the inverted
position (ϕ = ±π). Since the pendulum spends most of its period near the in-
verted position (because the pendulum moves and accelerates very slowly while
in the vicinity of the inverted position), the time averaged value of its potential en-
ergy, taken over a complete oscillation, is much greater than the mean value of its
kinetic energy. In this case potential energy is converted into kinetic energy only
for the short time during which the pendulum makes a rapid turn passing through
the lower equilibrium position of minimal potential energy. Try to evaulate (to an
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order of magnitude) the ratio of the values of the potential energy to the kinetic
energy, averaged over a period, during oscillations with an amplitude of 179.99◦.

2.3∗ Motion along the Separatrix.
(a) When you set the initial deflection to be almost 180 degrees and the initial

velocity to be zero, the phase trajectory of the resulting motion nearly coincides
with the separatrixϕ̇ = ±2ω0 cos(ϕ/2). The point representing the mechanical
state of the pendulum in the phase plane passes rapidly along the lower branch of
the separatrix, remains for a long time at the left saddle point(−π, 0), and then
returns along the upper branch of the separatrix. What initial conditions should
you choose in order to make the representative point move first along the upper
branch of the separatrix and then along the lower one?

(b) What value of the initial angular velocityΩ (in units ofω0) must be ini-
tially given to the pendulum in its lower equilibrium position in order to make the
representative point in the phase plane move along the separatrix? What value
of the initial angular velocity should you input if the pendulum is to be initially
deflected from the equilibrium position by an angle of 60◦? 90◦? −90◦? 120◦?
Verify your answers with simulation experiments.

(c) For the limiting motion along the separatrix, calculate the time intervalτ
during which kinetic energy of the pendulum is greater than its potential energy.
Or, which is the same, for the pendulum making its circular path from one side of
the inverted position to the other, find the lapse of time between the two instants
at which the pendulum passes through the horizontal positions on either side of
the lower equilibrium position. Express this time interval in units of the period
T0 of small oscillations. Verify your calculated value by the experiment on the
computer.

2.4 Large Oscillations with Friction.
(a) Examine the influence of viscous friction on oscillations of large ampli-

tude. Begin with rather weak friction (Q ≈ 20). Note the gradual changes in the
pattern of the graphs as friction slowly decreases the mechanical energy and the
amplitude of the pendulum. In particular note how the initial triangular saw-tooth
curve of angular velocity with its sharp nearly rectilinear teeth, as well as the ini-
tial curve of angular deflection with smooth parabolic crests, both evolve into the
sinusoidal curves characteristic of the simple harmonic oscillator.

(b) Under the influence of viscous friction, the topologies of the phase trajec-
tories of a pendulum change. Instead of closed curves corresponding to exactly
periodic oscillations of a conservative pendulum, you see twisting spirals making
an infinite number of gradually shrinking loops around the focus at the origin of
the phase plane. Note how the form of the loops changes when they recede from
the separatrix. Give a qualitative explanation for the observed changes. (For a lin-
ear oscillator experiencing viscous friction, the shrinking loops of the phase curve
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remain similar as the curve approaches the origin.)
(c) Using the graphs in the panel “Phase diagram” of program, note how the

rate at which energy is dissipated depends upon the position of the representa-
tive point in the potential well. At which part of a cycle does the rate of energy
dissipation reach a maximum? Explain your answer.

(d)∗∗ Using the law of energy conservation, calculate the minimal value of
the initial velocity which the pendulum must be given in the lower equilibrium
position in order to reach the inverted position, for the case in which there is no
friction and for the case in which the quality factorQ = 20. What must be the
initial velocity in order to reach the inverted position if the pendulum is initially
deflected by the angle 60 degrees? By 90 degrees?

3 The Rotating Pendulum

A pendulum makes a full revolution if its total energy exceeds the value2mga, the
maximal value possible for its potential energy. The influence of the gravitational
force makes this rotation in the vertical plane nonuniform: the angular velocity is
a maximum (in the absence of friction) each time the pendulum passes through
the lower, stable, equilibrium position and a minimum each time the pendulum
passes through the upper, unstable, equilibrium position.

3.1 The Angular Velocity at Revolutions.
(a) Select the case of the absence of friction. Calculate the minimal initial

angular velocity needed to obtain a full revolution of the pendulum when it is ini-
tially at the lower equilibrium position. Note the character of the graph of angular
velocity versus time: As the pendulum revolves, its angular velocity changes peri-
odically (that is, the angular velocity oscillates in time), but the sign of the angular
velocity does not change (that is, the curve does not intersect the time axis).

(b)∗ How does the period of these oscillations change if the initial angular ve-
locity is increased? Calculate the minimal value of the oscillating angular velocity
for a given value of the initial angular velocity. Find the asymptotic dependence
of the period of rotation on the initial angular velocityT (Ω), valid for the values
of total energyE which are much greater than the potential energy of the inverted
pendulum (E À 2mga).

(c) What initial conditions must be entered in order to obtain a phase trajectory
located above the separatrix in the phase plane? Located below the separatrix?
Coinciding with the upper or lower branch of the separatrix?

3.2∗ The Period of Revolutions and Oscillations.
(a) It is especially interesting to compare the period of rotation with the pe-

riod of oscillation of the conservative pendulum whose total energyE is close to
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the maximal possible value of the potential energyEmax = 2mga. In this case,
the phase trajectories lie in the vicinity of the separatrix. Using the simulation
experiment, measure the period for two values of the total energyE that slightly
differ from Emax by equal amounts on either side ofEmax. For example, first let
E/Emax = 0.999 and then letE/Emax = 1.001. If you excite the motion of the
pendulum from the lower equilibrium position, what values of the initial velocity
should you enter for imparting such energies to the pendulum? Remember that
you should enter the initial velocity in units of natural frequencyω0 of infinitely
small natural oscillations.

(b) What is the ratio of the periods you have measured in these two cases?
How can you explain this ratio?

(c) When the total energyE of the pendulum is greater than the heightEmax =
2mga of the potential barrier, the period of rotationT rapidly decreases as the
energy is increased. The period tends to zero with the growth of the energy. What
is the asymptotic behavior ofT (E) whenE tends to infinity?

3.3∗ Rotation of the Pendulum with Friction.
(a) Examine experimentally the rotation of the pendulum in the presence of

weak viscous friction. Note the gradual approach of the phase trajectory to the
separatrix. What is the value of the total energy of the pendulum at the moment
when the phase trajectory crosses the separatrix? Note that before the crossing
(while the pendulum is executing complete revolutions), the kinetic energy and
the angular velocity of the pendulum are never zero.

(b)∗∗ Using the law of energy conservation, evaluate the minimal value of the
initial velocity needed to obtain a complete revolution of the pendulum when it is
initially in the lower position if the quality factorQ = 20. What value of the initial
velocity is needed to obtain two revolutions of the pendulum? Verify your result
in a simulation experiment. Try to improve the approximate theoretical value of
the required initial velocity by trial end error.
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