
Forced Oscillations in a Linear System –
Problems

Summary of the Principal Formulas

The differential equation of forced oscillations for the kinematic excitation:

ϕ̈ + 2γϕ̇ + ω2
0ϕ = ω2

0φ0 sin ωt.

Steady-state forced oscillations are described by the particular periodic solu-
tion of this inhomogeneous differential equation:

ϕ(t) = a sin(ωt + δ).

The amplitude a and the phase shift δ of steady-state forced oscillations:

a(ω) =
ω2

0φ0√
(ω2

0 − ω2)2 + 4γ2ω2
, tan δ = − 2γω

ω2
0 − ω2

.

The driving frequency ωres at which the amplitude of steady-state forced os-
cillations is a maximum is given by:

ωres =
√

ω2
0 − 2γ2 ≈ ω0

(
1− γ2

ω2
0

)
= ω0

(
1− 1

4Q2

)
.

The amplitude of steady-state oscillations at resonance (for γ <
√

2 ω0) and
its approximate value for γ ¿ ω0 are given by:

amax =
ω2

0φ0

2γ
√

ω2
0 − γ2

≈ ω0φ0

2γ
= Qφ0.

Here the quality factor Q is the same dimensionless quantity, Q = ω0/(2γ), that
characterizes the damping of free oscillations.

The amplitude Ω of the angular velocity of steady-state oscillations:
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Ω = ωa(ω) =
ω2

0φ0√
(ω2

0/ω − ω)2 + 4γ2
.

The maximal amplitude Ω of the angular velocity of steady-state oscillations
at resonance (for which ω = ω0) is given by:

Ωmax = ωa(ω0) =
ω2

0φ0

2γ
= ω0Qφ0.

The initial conditions which eliminate the transient process are:

ϕ0 = a sin δ, ϕ̇(0) = aω cos δ,

where a and δ are the amplitude and the phase of steady-state oscillations.
The transient process at the resonant frequency and zero initial conditions:

ϕ(t) = −Qφ0(1− e−γt) cos ω0t.

1 Steady-state Forced Oscillations
In order to display steady-state oscillations without a preliminary transient process
(when the option “Show steady-state” is chosen), the simulation program auto-
matically sets the initial conditions to be ϕ(0) = a sin δ and ϕ̇(0) = aω cos δ
(overriding any initial conditions you may have entered). These initial conditions
provide steady-state oscillations immediately after the external force is activated.
The values of the amplitude a and the phase δ are calculated in the program for
the values of the external frequency ω and the quality factor Q you have entered.

1.1 Steady-state Forced Oscillations without Friction.
(a) Setting properties of the system, choose full absence of friction. In this

case, the transient process lasts indefinitely, so that steady-state oscillations do
not establish. How can you explain the physical sense of the analytical solution
that describes steady-state forced oscillations in the absence of friction? Is this
solution applicable to a real system? If so, what conditions must be satisfied in
order that it were possible in a real system to observe the motion described by this
analytical solution?

(b) Convince yourself that for driving frequencies smaller than the natural
frequency (ω < ω0), the steady-state sinusoidal oscillations of the flywheel occur
exactly in phase with the oscillations of the driving rod. At what frequency is
the amplitude of the flywheel twice that of the rod? Calculate this frequency and
verify your answer with a simulation experiment.
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(c) Convince yourself that for driving frequencies greater than the natural fre-
quency (ω > ω0), the phase of the steady-state oscillations of the flywheel is
exactly opposite that of the exciting rod. At what value of the driving frequency
(ω > ω0) is the amplitude of the flywheel again twice that of the rod? At what
driving frequency are these amplitudes equal? At what frequency is the amplitude
of the flywheel one half that of the rod?

1.2∗ Transformations of Energy for Steady-state Oscillations.
(a) Using the plots of potential, kinetic, and total mechanical energy, find out

during which parts of the driving cycle is energy transmitted from the rod to the
oscillator. Give a physical explanation of this direction of energy transfer. Dur-
ing which parts of the cycle is energy transferred back from the oscillator to the
external source?

(b) For the kinematic excitation of forced oscillations, what is the ratio of the
average value of the potential energy to the average value of the kinetic energy for
each of those values of frequency for which the amplitude of the flywheel is twice
that of the rod? For the case when the amplitudes are equal? For the case when
the amplitude of the flywheel equals one half that of the rod? Compare the values
observed on the experimental plots with your calculated values.

1.3 The Amplitude and Phase of Steady-state Oscillations.
Examine steady-state oscillations in the presence of friction. Input some mod-

erate value of the quality factor, say, Q = 5.
(a) Evaluate the percentage shift of the resonant frequency from the natural

frequency.
(b) What is the ratio of the amplitude of steady-state oscillation of the flywheel

to the amplitude of the rod at resonance?
(c) What is the phase lag of the oscillation of the flywheel relative to the phase

of the rod at the resonant frequency and at a driving frequency equal to 0.8 of the
resonant value?

Answer the same questions for Q = 20.

1.4∗∗ Peculiarities of the Kinematic Excitation. In the case of the dynamic
excitation of oscillations by a given force whose value is independent of the posi-
tion of the flywheel, the ratio of the average potential energy to the average kinetic
energy equals (ω0/ω)2, so that for low frequencies the potential energy predomi-
nates. For kinematic excitation, the ratio of the average energies is different.

(a) Analyze the variations in time of both kinds of energy, and of the total en-
ergy for the kinematic mode of excitation. Give a reasonable physical explanation
for these energy variations. Calculate the ratio of the average values of potential
energy to kinetic energy in this case.

(b) At what frequency of the external torque are the average values of the
potential and kinetic energy equal to each other?
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(c) In the case of dynamic excitation, mean values of both kinds of energy
at resonance are equal to one another, and their changes occur exactly in oppo-
site phase, so that total mechanical energy remains constant. However, in the
kinematic mode of excitation of forced oscillations, total mechanical energy is
subjected to variations even at resonance. Explain these variations. Calculate how
much the maximal and minimal values of the total energy differ from its average
value (in percent).

1.5∗∗ Steady-state Oscillations at Various Frequencies.
(a) Let the driving frequency ω of the rod be a little less than the natural fre-

quency ω0, say, ω = 0.9 ω0, and let the value of Q be 5. What is the ratio of
the amplitude of the steady-state oscillations to the resonant amplitude? What is
the phase lag of the oscillation of the flywheel relative to the phase of the rod (in
fractions of a cycle)?

(b) At what values of the driving frequency (on either side of the resonant
frequency) is the amplitude of steady-state oscillations one half of the resonant
amplitude? What is the corresponding phase lag in each of these cases? What
kind of energy (averaged over a cycle) predominates in each of these cases?

(c) At what driving frequency ω are the amplitudes of the flywheel and of the
rod equal? What is the phase lag of the flywheel relative to the phase of the rod in
this case?

1.6∗∗ Half-Width of the Resonance Curve.
(a) Examine analytically and experimentally the dependence of the resonant

amplitude of steady-state oscillations on the value of the quality factor Q. How
does the half-width of the resonance curve depend on the quality factor Q? (The
half-width is the interval of driving frequencies within the limits of which the
amplitude of steady-state oscillations exceeds one half of its maximal value.) In
other words, how does the sharpness of the resonance peak change when damping
is increased?

Make the necessary calculations and then verify your answers by simulating
the appropriate experiments on the computer.

(b) How does the position of the resonance peak change as damping is in-
creased? At what value of Q is this maximum shifted to a frequency of zero? (In
this case the effect of a static external force applied to the system exceeds that of
a driving force oscillating at any frequency.)

1.7∗∗ Power Absorbed and Dissipated. Lorentzian.
(a) Prove analytically that for steady-state forced oscillations the power re-

ceived by the oscillator from the external source, averaged over a period, equals
the averaged value of energy dissipated by friction.

(b) Show that the spectral distribution of power absorbed by the oscillator with
weak friction for steady-state oscillations is described by the function
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F (ω) =
1

1 + (ω − ω0)2τ 2
,

where τ = 1/γ. (This function is encountered in various problems of physics. It
is called Lorentzian.)

2 Transient Processes
2.1∗ Initial Conditions which Eliminate a Transient.

(a) Under certain initial conditions there is no transient term. That is, imme-
diately after the external driving force is activated, the oscillator executes steady-
state oscillations with a constant amplitude at the driving frequency. What are
these initial conditions? Express the angle of deflection and the angular velocity
corresponding to these initial conditions in terms of the quality factor Q of the
oscillator and the parameters of the external action—the driving frequency ω and
the amplitude φ0 of oscillations of the rod.

(b) Letting Q = 5, ω = ω0, and φ0 = 15◦, calculate the initial angle of
deflection and the initial angular velocity for which there is no transient. Enter
your calculated values and verify experimentally that the forced oscillations are
purely sinusoidal from the beginning of the motion. Repeat the same procedure
for different values of the system parameters: Q = 25, ω = 0.5 ω0, φ0 = 15◦, and
say, Q = 25, ω = 1.5 ω0, φ0 = 15◦.

2.2∗ Transient Processes at Resonance.
Examine transient processes at resonance experimentally. Enter the following

values for the parameters: Q = 5, ω = ω0, φ0 = 15◦, and enter the initial
conditions ϕ(0) = 0, ϕ̇(0) = 0.

(a) Calculate the lapse of time, measured in units of the period, during which
the amplitude reaches 90% of its steady-state value. Verify your answer experi-
mentally. Note the monotonic growth of the amplitude and its exponential asymp-
totic approach to its steady-state value.

Analyze the character of energy conversions using the graphs of the kinetic,
potential, and total energy. At what instants of time is the growth in the total
energy of the oscillator a maximum?

(b) Carefully examine the graphs of the decomposition of the resonant tran-
sient process into its simple component parts (the transient term and the steady-
state oscillation). Note especially the exponential damping of the transient term.
Why does the initial value of the amplitude of this natural oscillation equal the
amplitude of the steady-state oscillation?
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(c)∗ Taking into account the analytic expression for ϕ(t) corresponding to the
resonant case (ω = ω0), predict the behavior of the Poincaré sections in the phase
plane. Verify your prediction by a simulation experiment.

(d)∗ Consider a transient process at resonance in the absence of friction. How
does the amplitude of oscillations increase in time during the transient process
which begins from the state of rest in the equilibrium position?

(e)∗∗ During a transient process, is it possible for the amplitude to decrease
if the frequency of the external force is exactly the resonant frequency? Give
physical arguments for your answer. Can you prove your answer experimentally?

2.3∗ Transient Processes Near Resonance.
Explore transient processes near resonance. Let the frequency of the external

force ω be equal, say, 1.2 ω0 (ω0 is the natural frequency of the oscillator). Con-
sider first of all behavior of the system in the absence of friction when the initial
conditions are zero.

(a)∗ Calculate the amplitude of the transient term, that is, the amplitude of os-
cillations with the natural frequency contributing into the transient process. Also
calculate the amplitude of the angular velocity of these oscillations. What is the
ratio of the amplitude of the transient term to the amplitude of steady-state forced
oscillations? Verify your answers experimentally.

(b) Through how many cycles does the rod oscillate before the amplitude of
oscillation of the flywheel reaches its maximal value? What is the lapse of time
between successive moments at which the amplitude is zero? In other words, what
is the beat period?

(c)∗∗ Calculate the maximal values of the angular velocity and of the angular
displacement during the beats. What is the ratio of the maximal amplitude of the
flywheel to the amplitude of the rod?

(d)∗∗ Note the distribution of the Poincaré sections of the phase trajectory for
this process of beats in the absence of friction. Explain this distribution.

(e)∗∗ Consider the effect of friction by entering a moderate value of the quality
factor Q (20 − 25), while keeping the previous values of the remaining parame-
ters. What changes in the behavior of the system do you expect? What is the
corresponding distribution of the Poincaré sections in the phase plane? Follow
behavior of the Poincaré sections for as long time as is needed for the steady-
state oscillations to establish. Explain the distribution of the Poincaré sections
displayed.

(f)∗∗ Change the driving frequency by a small amount. For example, let ω be
1.19 ω0 or 1.21 ω0 instead of 1.20 ω0. What changes in the transient process does
this change in the frequency cause? What are the corresponding distributions of
the Poincaré sections in the phase plane if there is no friction and if there is weak
friction? What are the reasons for the differences in appearance of the display
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from the case in which ω = 1.2 ω0?
(g)∗ Predict the distribution of Poincaré sections for ω = 1.25ω0.

2.4∗ Transient Processes Far from Resonance.
Investigate transient processes far from resonance. Let the frequency of the

driving rod be, say, four times smaller than the natural frequency of the oscillator:
ω = 0.25 ω0. Set the two initial conditions to zero.

(a) What are the oscillations like during the transient process if there is no
friction? Calculate the amplitudes of the two superimposed oscillations, one with
the natural frequency ω0 and the other with the driving frequency ω. What are the
the two amplitudes of the corresponding angular velocities?

(b) Observe and explain the shape of the phase trajectory and the distribution
of Poincaré sections.

(c) Next introduce moderate friction by setting Q to be approximately 15,
keeping the values of the other parameters. Note the gradual fading of the contri-
bution of the natural oscillations. (Use the option “Decomposition of the Transient
Process” to see how the time dependencies of these contributing simple oscilla-
tions are plotted.) Observe how the complex phase trajectory plotted during the
early stage of the transient process is transformed into the ellipse corresponding
to steady-state oscillations.

(d)∗∗ Consider the opposite case of a driving force with a high frequency. For
example, let the driving frequency be, say, four times greater than the natural
frequency of the oscillator: ω = 4 ω0. Set the two initial conditions to zero, and
let friction be zero.

What is the ratio of the amplitudes of the two superimposed oscillations with
the frequencies ω and ω0? By how many times does the maximal deflection during
the transient process exceed the amplitude of steady-state oscillations, contribut-
ing into the transient?

(e)∗∗ Compare the shapes of the phase trajectories and the distributions of the
Poincaré sections for the two cases, ω = 0.25 ω0 and ω = 4 ω0, in the absence
of friction. How can you explain the similarity in the phase trajectories for these
cases?

(f)∗ Introduce weak friction for the case in which ω = 4 ω0. Observe the
way in which frequent steady-state forced oscillations are established while the
contribution of slow transient natural oscillation gradually fades away. How does
the phase trajectory evolve in this case? What is the behavior of the Poincaré
sections during the corresponding transient process?

(g)∗∗ Repeat the simulation experiments for other values of the driving fre-
quency, say ω = 0.125 ω0, ω = 0.5 ω0, ω = 1.5 ω0, ω = 2 ω0, ω = 6 ω0). Explain
the peculiarities of the transient processes for these cases.

7


