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ABSTRACT

Several new types of regular and chaotic behavior of the parametrically driven pendulum are discov-
ered with the help of computer simulations. A simple physical explanation is suggested to the phenomenon
of subharmonic resonances. The boundaries of these resonances in the parameter space and the spectral
composition of corresponding stationary oscillations are determined theoretically and verified experimen-
tally. A close relationship between the upper limit of stability of the dynamically stabilized inverted pendu-
lum and parametric resonance of the non-inverted pendulum is established. Most of the newly discovered
modes are still waiting a plausible physical explanation.

1 Introduction
Simple dynamical systems for which our intuition may seem to be well developed can behave in very compli-

cated and even irregular ways. This occurs in spite of exact nature of governing physical laws and deterministic
character of relevant differential equations.

This paper examines different kinds of extraordinary behavior of a parametrically driven pendulum – a simple
system which serves a paradigm to contemporary nonlinear physics. Additionally, the differential equation for
the pendulum is frequently encountered in various branches of science and engineering.

Depending on the excitation frequency and amplitude of the pendulum pivot point, this seemingly simple
system exhibits a rich variety of nonlinear phenomena characterized by amazingly different types of motion. Some
modes of such parametrically forced pendulum are quite simple indeed and agree well with our intuition, while
others are very complicated and counterintuitive. Although after Stephenson [1] this system has been permanently
investigated during almost a century, a lot of new modes of its regular and chaotic motions are discovered only
recently.
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An interesting feature in the behavior of the parametrically driven rigid pendulum is the dynamic stabilization
of its inverted position. This intriguing system, widely known as “Kapitza’s pendulum” [2], attracted attention
of many researchers, and the theory of the phenomenon may seem to be well elaborated (see, for example, [3]).
Nevertheless, more and more new features in its behavior are reported regularly [4] – [12], [20]. Among recent
new discoveries the most significant are the destabilization of the (dynamically stabilized) inverted position at
large driving amplitudes through excitation of period-2 (“flutter”) oscillations [9]- [10], and the existence ofn-
periodic “multiple-nodding” regular oscillations [19].

Behavior of the pendulum whose axis is forced to oscillate with a frequency from certain intervals (and with
large enough amplitude) can be chaotic. The pendulum makes several revolutions in one direction, then swings
for a while with permanently changing amplitude, then rotates again in the former or in the opposite direction, and
so forth. For other values of the driving frequency and/or amplitude, the chaotic motion can be purely oscillatory,
without revolutions. For example, the pendulum can make one oscillation during each two driving periods, but in
each next cycle the motion (the phase orbit) is slightly (and randomly) different from the previous cycle. Chaotic
modes of the parametrically driven pendulum have been intensively investigated over past decades [13] – [18].

The overwhelming majority of publications related to the parametrically driven pendulum are highly mathe-
matical in nature and sometimes obscure the physical nature of the phenomenon under investigation. We present
in this paper quite simple qualitative physical explanations for several extraordinary modes of its regular behavior.
In particular, we show that the excitation of period-2 “flutter” mode is closely related with the commonly known
conditions of parametric instability for the non-inverted pendulum, and that the so-called “multiple-nodding” os-
cillations (which exist for both the inverted and downward positions) can be treated as high order subharmonic
resonances of the parametrically driven pendulum. The spectral composition of the subharmonic resonances in
the low-amplitude limit is investigated quantitatively, and the boundaries of the region in the parameter space are
determined in which these resonances can exist. The conditions of the inverted pendulum stability are determined
with a greater precision compared to the previous results.

Several new types of regular and chaotic behavior are reported for the parametrically driven pendulum, ex-
panding this beautiful collection. The new modes were discovered with the help of computer simulations. Most
of these modes are rather exotic and counterintuitive. They are still waiting a plausible physical explanation.
Understanding such complicated behavior of this simple system is certainly a challenge to our physical intuition.

2 The Physical System

For simplicity we consider a light rigid rod of lengthl with a heavy small bob of massmon its end and assume
that the rod has zero mass, so that all the mass of the pendulum is concentrated in the bob. The force of gravity
mg provides a restoring torque, given by−mglsinϕ, with a value proportional to the sine of angular deflection
ϕ of the pendulum from the equilibrium position. When the axis of the pendulum is constrained to move with
acceleration along the vertical line, it is convenient to analyze the motion in the non-inertial frame of reference
associated with this axis. Due to the acceleration of this frame the force of inertia−mz̈ is added to the force of
gravity, wherez(t) is the time-dependent vertical coordinate of the axis. The torque of this force−mz̈lsinϕ must
be added to the differential equation forϕ(t).

If the axis of the pendulum is forced to execute a given harmonic oscillation along the vertical line with a
frequencyω and an amplitudea,
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z(t) = asinωt or z(t) = acosωt, (1)

the force of inertiaFin(t) exerted on the bob also has a sinusoidal dependence on time. This force is directed
downward during the time intervals for whichz(t) < 0 (i.e., when the axis is below the middle point of its
oscillations), which is equivalent to some strengthening of the force of gravity, and upward when the axis is
over the middle point, which is equivalent to some weakening of the gravitational force. When the frequency
and/or amplitude of the pivot are large enough (whenaω2 > g), for some part of the period the apparent gravity
is even directed upward.

On the basis of this approach, taking into account the periodic variations of the apparent gravity, we can
easily explain, say, the physical reason for the ordinary parametric swinging of the pendulum, when its pivot is
driven vertically with a frequency approximately twice the frequency of natural oscillations. The time variations
of the force of inertia give a clear physical explanation to the growth of initially small oscillations at conditions
of parametric resonance. When the oscillating pivot is below its middle position, this additional force is directed
downward, and vice versa. We can treat the effect of this varying force as a periodic modulation of the gravitational
force. Let the pendulum move from the utmost deflection toward the lower equilibrium position while the pivot
in its constrained oscillation is below the mid-point. Due to the additional apparent gravity the pendulum gains
a greater speed than it would have gained in the absence of the pivot’s motion. During the further motion of the
pendulum away from the equilibrium position, the pivot is above its mid-point, so that the force of inertia reduces
the apparent gravity. Thus the pendulum reaches a greater angular displacement than it would have reached
otherwise. During the second half-period of the pendulum’s motion the swing increases again, and so on, until
the stationary motion is established due to violation of the resonance conditions at large swing.

The simulation of the system is based on numerical integration of the exact differential equation for the mo-
mentary angular deflectionϕ(t). This equation includes, beside the torque of the force of gravity, the instantaneous
value of the torque exerted on the pendulum by the force of inertia that depends explicitly on timet:

ϕ̈+2γϕ̇+ω2
0(1−

a
l

ω2

ω2
0

cosωt)sinϕ = 0. (2)

The second term takes into account the braking frictional torque, assumed to be proportional to the momentary
angular velocityϕ̇ in the mathematical model of the simulated system. The damping constantγ is related to the
dimensionless quality factorQ characterizing the role of viscous friction:Q = ω0/2γ.

We note that oscillations about the inverted position can be formally described by the same differential equa-
tion, Eqn. (2), with negative values ofω2

0. In other words, we can considerω2
0 = g/l in Eqn. (2) as a control

parameter whose variation is physically equivalent to changing the gravitational forcemg exerted on the pen-
dulum. When this control parameter is diminished through zero to negative values, the constant (gravitational)
torque in Eqn. (2) first turns to zero and then changes its sign to the opposite. Such a “gravity” tends to bring the
pendulum into the inverted positionϕ = π, destabilizing the downward positionϕ = 0 of the unforced pendulum:
if in Eqn. (2)ω2

0 < 0, the inverted position is equivalent to the downward position with the positive value ofω2
0 of

the same magnitude.
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The force of inertia, arising due to constrained oscillations of the axis, explains, in particular, the pendulum
stabilization in the inverted position. Details of the physical mechanism responsible for the dynamical stabilization
of the inverted pendulum can be found in [20]. The principal idea is utterly simple: Although the mean value of
the force of inertiaFin(t), averaged over the short period of these oscillations, is zero, the averaged over the period
value of itstorqueabout the axis is not zero. Figure 1 explains the origin of this torque.

Figure 1. Positions of the pendulum rod and the forces of inertiaF1 andF2, exerted on the pendulum in the non-inertial
reference frame (lower part of the figure) at the extreme positions1 and2 of the oscillating axisA.

When the axis is displaced downward (to position1) from its mid-point, the force of inertiaF1 exerted on the
bob is also directed downward. In the other extreme position2 the force of inertiaF2 has an equal magnitude
and is directed upward (see figure 1). However, the torque of the force of inertia in position2 is greater than in
position1 because thearm of the force in this position is greater. Also the mean (averaged over the period) value
of the torque is not zero. The reason is that both the forceFin(t) and thearm of this force vary with time in the
same way synchronously with the axis’ vibrations. This non-zero mean torque tends to align the pendulum along
the direction of forced oscillations of the axis. For given values of the driving frequency and amplitude, the mean
torque of the force of inertia depends only on the mean angleψ of the pendulum’s deflection from the direction
of the pivot’s vibration.

We can consider the angular motion of the pendulumϕ(t) as a superposition of two components: a “fast”
(or “vibrational”) component, and “slow” or “smooth” component described by the angleψ = 〈ϕ(t)〉, whose
variation during a period of constrained vibrations is small. If we use a stroboscopic illumination with a short
interval between the flashes that equals the period of constrained vibrations of the pendulum’s axis, we can see
only this slow component of the motion. This motion can be described by a slow-varying functionψ(t) satisfying
the following approximate differential equation if friction is ignored (see [20]):

ψ̈ =−ω2
0sinψ− 1

2
a2

l2
ω2cosψsinψ. (3)

We can introduce an effective potentialU(ψ) that governs the smooth motion of the pendulum averaged over
the rapid oscillations. This potential consists of two partsUgr(ψ) andUin(ψ) that describe the influence of the
force of gravity and the force of inertia respectively:
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U(ψ) = Ugr(ψ)+Uin(ψ) = mgl(1−cosψ)+
1
4

ma2ω2(1−cos2ψ). (4)

This effective potential was first introduced by Landau [3], and derived by various different methods after-
wards (see, for example, [11], [12], or [20]). The graphs ofUgr(ψ) andUin(ψ) are shown in Fig. 2. They both
have a sinusoidal shape, but the period ofUin(ψ) is just one half of the period ofUgr(ψ). Their minima atψ = 0
coincide, thus generating the principal minimum of the total potential functionU(ψ) = Utot(ψ). This minimum
corresponds to the stable lower equilibrium position of the pendulum. But the next minimum ofUin(ψ) is located
at ψ = π, whereUgr(ψ) has its maximum corresponding to the inverted position of the pendulum.

Figure 2. Graphs of the gravitational potential energyUgr, mean potential energyUin in the field of the force of inertia, and of
the total potential energyUtot(ψ) for the pendulum with an oscillating axis (a2ω2/gl = 4.8).

As follows from (4) or (3), the mean torque of the force of inertia can exceed in magnitude the torque of the
gravitational force tending to tip the pendulum down, when the following condition is fulfilled:

a2ω2 > 2gl. (5)

When this criterion of dynamical stabilization, Eqn. (5), is fulfilled, the maximum admissible angular deflec-
tion from the inverted vertical positionθmax= π−ψ0 for which the pendulum will return to this position, is given
by the following equation (valid for any values ofθmax that do not exceedπ/2):

cosθmax =−cosψ0 =
2gl

a2ω2 = 2

(
ω0

ω
l
a

)2

. (6)

Being deflected from the downward vertical position (and from the upward by an angle that does not exceed
θmax), the pendulum will execute relatively slow oscillations about this equilibrium position. This motion can be
described by a slow-varying functionψ(t) satisfying differential equation (3). The frequenciesωup andωdown

5 Copyright c© 2005 by ASME



of small slow oscillations about the inverted position and the lower vertical position are given by the following
expressions:

ω2
up =

1
2

(a
l

)2
ω2−ω2

0, ω2
down =

1
2

(a
l

)2
ω2 +ω2

0. (7)

Substitutingω0 = 0 into these formulas, we get the expressionωslow = ω(a/l)/
√

2, valid ata/l ¿ 1 for the
frequency of small slow oscillations of the pendulum with vibrating axis in the absence of the gravitational force.

3 Subharmonic resonances of high orders
The natural slow oscillatory motion in the effective potential well is almost periodic (exactly periodic in the

absence of friction). Executing these damped slow oscillations, the pendulum gradually approaches the equilib-
rium position (either dynamically stabilized inverted position or ordinary downward position). However, when
the driving amplitude and frequency lie within certain ranges, the pendulum can be trapped in an-periodic limit
cycle locked in phase to the rapid forced vibration of the axis. In such oscillations the phase trajectory repeats
itself aftern driving periodsT. Since the motion has periodnT, and the frequency of its fundamental harmonic
equalsω/n (whereω is the driving frequency), this phenomenon can be called a subharmonic resonance ofn-th
order. For the inverted pendulum with a vibrating pivot, periodic oscillations of this type were first described by
Acheson [19], who called them “multiple-nodding” oscillations.

Such oscillations, which are synchronized with the excitation frequency, can occur also about the downward
position and, in the absence of gravity, about any of the two equivalent dynamically stabilized equilibrium posi-
tions (see [21]). An example of such stationary oscillations whose period equals eight periods of the axis is shown
in Fig. 3.

The left-hand upper part of the figure shows the spatial trajectory of the pendulum’s bob at these multiple-
nodding oscillations. The left-hand lower part shows the closed looping trajectory in the phase plane (ϕ, ϕ̇).
Right-hand side of Fig. 3, alongside the graphs ofϕ(t) andϕ̇(t), shows also their harmonic components and the
graphs of the pivot oscillations. The fundamental harmonic whose period equals eight driving periods dominates
the spectrum. We may treat it as a subharmonic (as an “undertone”) of the driving oscillation. This harmonic
describes the discussed above smooth componentψ(t) of the compound period-8 oscillation.

The approximate approach based on the effective potential (see Fig. 2) for the slow motion provides a simple
qualitative physical explanation for such an extraordinary and even counterintuitive behavior of the pendulum.
Moreover, for subharmonic resonances withnÀ 1 this approach yields rather accurate quantitative results.

Indeed, since the natural slow oscillatory motion in the effective potential well is almost periodic, we suppose
that a subharmonic resonance of ordern can occur if one cycle of this slow motion covers approximatelyn driving
periods. In other words, the driving frequencyω should be close to an integer multiplen of the natural frequency
of slow oscillations near either the inverted or the ordinary equilibrium position:ω = nωup or ω = nωdown. In this
case the phase locking can occur, in which one cycle of the slow motion is completedexactlyduring n driving
periods. Synchronization of these modes with the oscillations of the pivot (phase locking) creates conditions for
systematic supplying the pendulum with the energy needed to compensate for dissipation, and the whole process
becomes exactly periodic.

As an example how the approach based on the effective potential allows us to explain properties of these
n-periodic oscillations and to predict conditions at which they can occur, we consider first a simple special case
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Figure 3. The spatial path, phase orbit with Poincaré sections, and graphs of stationary period-8 oscillations. The graphs
are obtained by a numerical integration of the exact differential equation, Eqn. (2), for the momentary angular deflection
ϕ(t) (with ω0 = 0, a/l = 0.265, Q = 400). Time is indicated in drive periods. Thin lines show separate harmonics. The
fundamental harmonic with the frequencyω/8 dominates the spectrum. The 7th and 9th harmonics have nearly equal
amplitudes. Graphs of the axis motion−z(t) and−ż(t) are also shown.

of the pendulum in the absence of gravity, or, which is essentially the same, the limiting case of very high driving
frequenciesω À ω0 (ω/ω0 → ∞). In this limit both equilibrium positions (ordinary and inverted) are equiva-
lent, and the normalized driving amplitudem= a/l is the only physical parameter to be predicted as a required
condition for the subharmonic resonance of ordern.

At ω0 = 0 (that is, in the absence of gravity), according to Eqn. (7), the frequency of slow oscillations is
given byωslow/ω = m/

√
2, whence for the subharmonic resonance of ordern, at which the period of the slow

motion equalsn periods of the axis,mmin =
√

2/(ω/ωslow) =
√

2/n. For the subharmonic resonance of 8th order
(n = 8) shown in Fig. 3 we findmmin =

√
2/8 = 0.177. This value is rather close to the predictions of a more

precise theory of the boundaries for these modes based on the linearized differential equation of the system (see
Eqn. (12) below), which gives for such period-8 small oscillations in the absence of gravity the normalized driving
amplitudea/l = 0.173. The latter value agrees well with the simulation experiment in conditions of small angular
excursions of the pendulum.

In the presence of gravity, assumingωdown,up= ω/n (ndriving cycles during one cycle of the slow oscillation),
we find for the minimum normalized driving amplitudes (for the boundaries of the subharmonic resonances) the
values

mmin =

√
2

(
1
n2 ∓

ω2
0

ω2

)
, (8)

Since negative values ofω2
0 can be treated as referring to the inverted pendulum, the boundaries of subharmonic
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resonances can be expressed both for the inverted and non-inverted pendulum by the same formula:mmin =√
2(1/n2−k), where parameterk = (ω0/ω)2 is negative for the inverted pendulum. The limit of this expression

atn→∞ gives the mentioned earlier approximate criterion of stability of the inverted pendulum (5):mmin =
√−2k

(wherek < 0).
Being based on a decomposition of motion on slow oscillations and rapid vibrations with the driving frequency,

Eqn. (8) is approximate and valid if the amplitude of constrained vibration of the axis is small compared to the
pendulum’s length (a¿ l ). Moreover, in the presence of gravity the driving frequency must be much greater than
the frequency of small natural oscillations of the pendulum (ωÀ ω0). These restrictions mean that we should not
expect from the approach discussed here to give an exhaustive description of the parametrically driven pendulum
in all cases.

The simulations show clearly (see graphs in Fig. 3) that the momentary deflection angleϕ(t) can be repre-
sented approximately as a superposition of the slow varying mean angleψ(t) and the high frequency term whose
angular amplitude is proportional to sine ofψ(t):

ϕ(t)≈ ψ(t)− (z/l)sinψ(t) = ψ(t)− (a/l)sinψ(t)cosωt. (9)

For small angular excursions of the pendulum we can replacesinψ by ψ in the second term of Eqn. (9), and
assume for the slow motion the following sinusoidal time dependence:ψ(t) = Asin(ωt/n) with the frequency
ω/n. This means that the spectrum of small amplitude stationaryn-period oscillations consists primarily of the
fundamental harmonicAsin(ωt/n) with the frequencyω/n, and two high harmonics of the ordersn−1 andn+1:

ϕ(t) = Asin(
ω
n

t)−mAsin(
ω
n

t)cosωt =

Asin(
ω
n

t)−mA
2

sin(
n−1

n
ωt)+

mA
2

sin(
n+1

n
ωt). (10)

This spectral composition is clearly seen from the plots in Fig. 3. While the pendulum is crossing the equi-
librium position, both high harmonics add in opposite phases and thus almost don’t distort the smooth motion
(described by the principal harmonic). Near the utmost deflections, the phases of high harmonics coincide, and
thus here their sum causes the most serious distortions of the smooth motion.

According to Eqn. (10), both high harmonics have equal amplitudesmA/2. However, we see from the plots in
Fig. 3 that these amplitudes are slightly different. Therefore we can try to improve the approximate expression for
ϕ(t), Eqn. (10), as well as the theoretical values for the lower boundaries of subharmonic resonances, Eqn. (8),
by assuming for the possible solution a similar spectrum but with unequal amplitudes,An−1 andAn+1, of the two
high harmonics (forn > 2, the case ofn = 2 will be considered separately):

ϕ(t) = A1sin(
ω
n

t)+An−1sin(
n−1

n
ωt)+An+1sin(

n+1
n

ωt). (11)
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Since oscillations at the boundaries have infinitely small amplitudes, we can use instead of Eqn. (2) the fol-
lowing linearized (Mathieu) equation:

ϕ̈+2γϕ̇+(ω2
0−mω2sinωt)ϕ = 0. (12)

Substitutingϕ(t), Eqn. (11), into Eqn. (12) withγ = 0, and expanding the products of trigonometric functions,
we obtain a system of approximate equations for the coefficientsA1, An−1 andAn+1:

2(kn2−1)A1 +mn2An−1−mn2An+1 = 0,

mn2A1 +2[n2(k−1)+2n−1]An−1 = 0, (13)

−mn2A1 +2[n2(k−1)−2n−1]An+1 = 0.

The homogeneous system has a nontrivial solution if its determinant equals zero. This condition yields an
equation for the corresponding critical (minimal) driving amplitudemmin at whichn-period modeϕ(t), Eqn. (11),
can exist. Solving the equation, we find:

m2
min =

2
n4

[n6k(k−1)2−n4(3k2 +1)+n2(3k+2)−1]
[n2(1−k)+1]

. (14)

Then, for this critical driving amplitudemmin, the fractional amplitudesAn−1/A1 andAn+1/A1 of high har-
monics for a given ordern can be easily found as the solutions to the homogeneous system of equations, Eqs. (13).

The limit of mmin, Eqn. (14), atn→ ∞ gives an improved formula for the lower boundary of dynamic stabi-
lization of the inverted position instead of the commonly known approximate criterionmmin =

√−2k, Eqn. (5):

mmin =
√
−2k(1−k), k =−(ω0/ω)2 =−g/(lω2) < 0. (15)

As follows from Eqn. (14), subharmonic oscillations of a given ordern (for n > 2) are possible fork≤ 1/n2,
that is, for the driving frequencyω ≥ nω0. If the driving frequencyω is increased beyond the valuenω0 (i.e.,
ask is decreased from the critical value1/n2 towards zero), the threshold driving amplitude rapidly increases.
The limit of very high driving frequency (ω/ω0 → ∞), in which the gravitational force is insignificant compared
with the force of inertia (or, which is essentially the same, the limit of zero gravityω0/ω → 0), corresponds to
k = 0. Negativek values describe the transition through zero gravity to the “gravity” directed upward, which is
equivalent to the case of an inverted pendulum in ordinary (directed downward) gravitational field. Therefore for
negativek values Eqn. (14) gives the threshold driving amplitudes for subharmonic resonances of the inverted
pendulum.

Further details of subharmonic resonances are described in [21]. Here we would like to emphasize that sub-
harmonic resonances, which have been discovered by Acheson (see [19]) in investigations of the dynamically
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stabilized inverted pendulum with a vibrating pivot (“multiple-nodding” oscillations), are not specific for the in-
verted pendulum. They can be executed also (at appropriate values of the driving parameters) about the ordinary
(downward) equilibrium position. Actually, the origin of subharmonic resonances is independent of gravity: sim-
ilar “multiple-nodding” oscillations synchronized with the pivot can occur also in the absence of gravity about
any of the two equivalent dynamically stabilized equilibrium positions. Since most peculiarities of these counter-
intuitive modes are not related to the force of gravity, they can be physically explained when they are observed in
their purest form in the absence of gravity, being described by Eqn. (2) withω0 = 0.

According to Eqn. (14), the following values of the normalized driving amplitudes correspond to the threshold
conditions at zero gravity (k = 0):

mmin =
√

2(n2−1)
n2
√

n2 +1
. (16)

The fractional amplitudesAn−1/A1 andAn+1/A1 of the most important high harmonics ofϕ(t) [expressed
approximately by Eqn. (11)] for the case of zero gravity (k = 0) are given by the following formulas:

An−1

A1
=

n+1√
2
√

n2 +1(n−1)
,

An+1

A1
=

n−1√
2
√

n2 +1(n+1)
. (17)

For subharmonic resonances of high orders (nÀ 1), Eqn. (16) yields the approximate valuemmin≈
√

2/n (in
the case of zero gravity) obtained earlier with the help of the simple approach which explains the physical nature
of n-order subharmonic resonance and treats its condition as the coincidence ofn driving periods with one period
of the smoothed, slow motion of the pendulum near the bottom of the effective potential well. The fractional
amplitudes of both high harmonicsAn−1/A1 andAn+1/A1, given by Eqn. (17), atn À 1 are almost equal and
approach to the common value1/(

√
2n) = mmin/2, in accordance with equation (10) that describes then-period

subharmonic oscillations as a superposition of the slow and rapid motions.
For the boundariesmmin of subharmonic resonances in cases of not very high ordersn, Eqn. (16) gives im-

proved theoretical values, as well as Eqn. (17) gives improved values for the (non-equal) fractional amplitudes
of high harmonicsAn−1/A1 and An+1/A1. For the period-8 oscillations in the absence of gravity (ω0 = 0),
Eqn. (16) yields for the critical value of the driving amplitudea/l = mmin = 63/(32

√
130) = 0.173. Equa-

tions (17) yield for the fractional contributions of the 7th and 9th harmonicsA7/A1 = 9/(7
√

130) = 0.113,
A9/A1 = 7/(9

√
130) = 0.068. All these theoretical values agree perfectly well with the simulations of period-8

small oscillations based on numerical integration of the exact differential equation of the system, Eqn. (2). We
have observed also a perfect agreement between theoretical and experimental results for subharmonic resonances
with smaller values ofn.

4 Overlapping of subharmonic resonances and their spectral composition
If the drive amplitude exceeds the threshold value for some subharmonic resonance of ordern given by

Eqn. (14), the pendulum, being excited to this mode, executes in its slow motion finite angular excursions over the
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slanting slopes of the effective potential well, Fig. 2. Due to non-parabolic shape of the potential well, this slow
motion ψ(t) is not purely sinusoidal, contrary to our assumption used in Eqn. (10). This causes the appearance
of additional spectral components. For the oscillations of a large swing shown in Fig. 3, the contribution of the
3rd harmonic to the spectrum is noticeable. Moreover, because the smooth motion is executed in the effective
potential well with a “soft” restoring force, the period becomes longer as the amplitude is increased. Therefore
large-amplitude period-8 oscillations shown in Fig. 3 (their swing equals 80◦) occur at a considerably greater
value of the driving amplitude (a = 0.265l ) than the critical (threshold) valueamin = 0.173l .

By virtue of the mentioned above dependence of the period of non-harmonic smooth motion on the swing,
several modes of subharmonic resonance with different values ofn can coexist at the same amplitude and fre-
quency of the pivot. Indeed, the period of a slow non-harmonic oscillation with some finite amplitude can be
equal to, say, six driving periods, while the period of a slow oscillation with a somewhat greater amplitude in the
same non-parabolic potential well can be equal to eight driving periods.

Figure 4. The spatial path, phase orbit with Poincaré sections, and graphs of stationary period-6 oscillations. The graphs are
obtained by a numerical integration of the exact differential equation, Eqn. (2), for the momentary angular deflectionϕ(t)
(with ω0 = 0, a/l = 0.265, Q = 400). Thin lines show separate harmonics. The fundamental harmonic with the frequency
ω/6 dominates the spectrum. The 5th and 7th harmonics have noticeable amplitudes. Graphs of the axis motion−z(t) and
−ż(t) are also shown.

Figure 4 shows the simulation of such period-6 mode, coexisting with the mode shown in Fig. 3 (obtained
at identical parameters of the system). That is, both smooth motions occur in the same effective potential well.
In which of these competing modes is the pendulum eventually trapped in a certain simulation, depends on the
starting conditions. The set of initial conditions that leads, after transients decay, to a given dynamic equilibrium
(to the same steady-state periodic motion, or attractor) in the limit of large time, constitutes the basin of attraction
of this attractor. The coexisting periodic motions in Figs. 3 and 4 represent competing attractors and are character-
ized by different domains of attraction. The influence of the non-linear character of Eqn. (3) for the slow motion
of the pendulum on the critical driving amplitude and spectral composition of resonant oscillations is discussed
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in [21] with more detail.
Friction introduces a phase shift between forced oscillations of the pivot and harmonics of the steady-state

n-periodic motion of the pendulum. By virtue of this phase shift the pendulum is supplied with energy needed
to compensate for frictional losses. With friction, the direct and backward spatial paths of the pendulum do not
coincide, and the symmetry of the phase trajectory with respect to the ordinate axis is destroyed. This is clearly
seen from Figs. 3 or 4 for subharmonic resonances in the presence of weak friction.

5 Subharmonic resonances of fractional orders

In this section, we discuss new modes of regular behavior of the parametrically driven pendulum, akin to the
above-described subharmonic resonances. We have discovered these modes in simulation experiments and briefly
described for the first time in [21].

Figure 5. The spatial path, phase orbit, and graphs of stationary oscillations that can be treated as a subharmonic resonance
of a fractional order 8/3. The third harmonic (frequency3ω/8) dominates the spectrum.

Figure 5 shows a regular period-8 motion of the pendulum, which can be characterized as a subharmonic res-
onance of a fractional order, specifically, of the order 8/3 in this example. Here the amplitude of the fundamental
harmonic (whose frequency equalsω/8) is much smaller than the amplitude of the third harmonic (frequency
3ω/8). This third harmonic dominates the spectrum, and can be regarded as the principal one, while the fun-
damental harmonic can be regarded as its third subharmonic. Considerable contributions to the spectrum are
given also by the 5th and 11th harmonics of the fundamental frequency. Approximate boundary conditions for
small-amplitude stationary oscillations of this type (n/3-order subresonance) can be found analytically from the
linearized differential equation by a method similar to that used above forn-order subresonance: we can try as
ϕ(t) a solution consisting of spectral components with frequencies3ω/n, (n−3)ω/n, and(n+3)ω/n:
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ϕ(t) = A3sin(
3
n

ωt)+An−3sin(
n−3

n
ωt)+An+3sin(

n+3
n

ωt). (18)

Substituting this trial functionϕ(t) into Eqn. (12) (withγ = 0) and expanding the products of trigonometric
functions, we obtain a system of equations for the coefficientsA3, An−3 andAn+3. Condition of existence of a
non-trivial solution to the system yields the following expression for the minimal driving amplitude:

mmin =
3
√

2(n2−32)
n2
√

n2 +32
. (19)

(Compare Eqn. (19) with a similar expression, Eqn. (16), for the critical driving amplitude of the integer-order
subharmonic resonances.) The analytical results of calculations forn≥ 8 agree well with the simulations, espe-
cially if one more high harmonic is included in the trial functionϕ(t), Eqn. (18). If the driving amplitude exceeds
the critical value, the angular excursion of the pendulum at these modes increases, and additional harmonics
appear in its spectrum.

6 Principal parametric resonance and the upper boundary of stability in the inverted state
For principal parametric resonance, two driving cycles are executed during one period of stationary oscilla-

tions. This means that we can treat it as a subharmonic resonance of the second order (n = 2). For smalln values
the effective potential approach is not applicable because in such cases the period of “smooth” motion contains
only a few driving periods. The “fast” component of motion, whose frequency forn = 2 is only twice the driving
frequency, is not fast enough for good averaging in transition to the effective potential. Although in this case
we cannot use the effective potential, the physical explanation of instability of the the downward position (which
leads to excitation of principal parametric resonance) is quite straightforward. Also the quantitative theoretical
expressions for the boundaries of the instability region in the planeω – m (driving frequency – drive amplitude)
are easily available with the help of standard methods (see, for example, [3]).

However, the treatment of principal parametric resonance as a subharmonic resonance of a definite order
n = 2 leads us to the conclusion that a similar phenomenon is possible not only for the downward position of the
pendulum, but also for the dynamically stabilized inverted pendulum, as well as for the pendulum with oscillating
axis in the absence of gravity, just like the above-discussed subharmonic resonances withn > 2 are possible in all
these cases. Indeed, when the amplitudea of the pivot vibrations is increased beyond certain critical valueamax,
the dynamically stabilized inverted position of the pendulum loses its stability. After a disturbance the pendulum
does not come to rest in the up position, no matter how small the release angle, but instead eventually settles into a
finite amplitude steady-state oscillation about the vertical position at frequencyω/2 (half the driving frequency).
This loss of stability of the inverted pendulum has been first described by Blackburnet al. [8] (the “flutter” mode)
and demonstrated experimentally in [9]. (The latest numerical investigation of the bifurcations associated with the
stability of the inverted state can be found in [18].) Next we show that this “flutter” mode and ordinary parametric
resonance of the pendulum in the downward position belong to the same branch (in the parameters planeω – m)
of possible stationary oscillations.

13 Copyright c© 2005 by ASME



Figure 6. Stationary double-period oscillations occurring over the upper boundary of dynamic stability in the absence of
gravity (the “flutter” mode). The spectrum consists of the fundamental harmonic (frequencyω/2) and the third harmonic
(frequency3ω/2). The graphs are obtained by a numerical integration of the exact differential equation for the momentary
angular deflectionϕ(t), Eqn. (2) withω0 = 0, a/l = 0.56, Q = 10.0.

The graphs and the double-lobed phase trajectory of such oscillations are shown in Fig. 6. The simulation
shows a very simple spectral composition: the fundamental harmonic whose frequency equalsω/2 (half the
driving frequencyω) with an addition of the third harmonic with the frequency3ω/2. Therefore the boundary
of dynamic stability can be found directly from the linearized differential equation of the system, Eqn. (12), by
including these harmonics into the trial function:

ϕ(t) = A1cos(ωt/2)+A3cos(3ωt/2). (20)

Thus we get a system of homogeneous equations for the coefficientsA1 andA3, which has a nontrivial solution
when its determinant equals zero. This requirement yields a quadratic equation for the desired normalized critical
driving amplitudeamax/l = mmax. The relevant root of this equation (in the caseω0 = 0 which corresponds to
the absence of gravity or to the high frequency limit of the pivot oscillations with gravity) ismmax = 3(

√
13−

3)/4 = 0.454, and the corresponding ratio of amplitudes of the third harmonic to the fundamental one equals
A3/A1 = (

√
13−3)/6 = 0.101.

A somewhat more complicated calculation in which the higher harmonics (up to the 7th) inϕ(t) are taken
into account yields formmax andA3/A1 the values that coincide (within the assumed accuracy) with those cited
above. These values agree well with the simulation experiment in conditions of the absence of gravity (ω0 = 0)
and very small angular excursion of the pendulum. When the normalized amplitude of the pivotm= a/l exceeds
the critical valuemmax = 0.454, the swing of the period-2 “flutter” oscillation (amplitudeA1 of the fundamental
harmonic) increases in proportion to the square root of this excess:A1 ∝

√
a−amax. This dependence follows

from the nonlinear differential equation of the pendulum, Eqn. (2), ifsinϕ is approximated asϕ−ϕ3/6, and
agrees well with simulation experiments for amplitudes up to45◦.
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As the normalized amplitudem= a/l of the pivot is increased over the value0.555, the symmetry-breaking
bifurcation occurs: The angular excursions of the pendulum to one side and to the other become different, de-
stroying the spatial symmetry of the oscillation and hence the symmetry of the phase orbit. As the pivot amplitude
is increased further, afterm= 0.565the system undergoes a sequence of period-doubling bifurcations, and finally,
at m= 0.56622(for Q = ω/2γ = 20), the oscillatory motion of the pendulum becomes replaced, at the end of a
very long chaotic transient, by a regular unidirectional period-1 rotation.

Similar theoretical investigation of the boundary conditions for period-2 stationary oscillations in the presence
of gravity allows us to obtain the dependence of the critical (destabilizing) amplitudem= a/l of the pivot on the
driving frequencyω. In terms ofk =±(ω0/ω)2 this dependence has the following form:

mmax = (
√

117−232k+80k2−9+4k)/4. (21)

Figure 7. The boundaries of parametric instability – driving amplitudem= a/l versus normalized driving frequency.1 and
2 – boundaries of the principal interval of parametric instability (ω≈ 2ω0) for the non-inverted pendulum in the absence of
friction, 3 – the same with friction (Q = 5.0), 4 and5 – the upper and lower boundaries of dynamic stability for the inverted
pendulum.

The diagram in Fig. 7 shows these boundaries of instability. For the downward position of the pendulum, in the
absence of friction the critical amplitude given by Eqn. (21) tends to zero as the frequency of the pivot approaches
2ω0 from either side (curves1 and 2). This case (small vertical oscillations of the pivot with the frequency
approximately twice the natural frequency of the pendulum) corresponds to ordinary parametric resonance, for
which a very clear physical explanation can be suggested. If the driving frequency deviates from2ω0, a finite
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driving amplitude is required for infinitely small steady parametric oscillations even in the absence of friction.
Curve3 shows in the parameters plane (ω/ω0, a/l ) the region of principal parametric resonance with friction
(for Q = 5.0). The non-inverted vertical position of the pendulum with the pivot vibrating at frequency2ω0 loses
stability when the normalized amplitude of this vibration exceeds the threshold value of1/2Q. This curve almost
merges with curves1 and2 as the frequencyω deviates from the resonant value2ω0. In the high-frequency limit,
for which the role of gravity is negligible, the normalized critical pivot amplitudea/l tends to the above-indicated
value a/l = 3(

√
13− 3)/4 = 0.454 that corresponds to the destabilization of the two symmetric equilibrium

positions in the absence of gravity.
Curve4 of this diagram corresponds to destabilization of the inverted pendulum by excitation of the “flutter”

oscillations. The smaller the frequency of the pivot, the greater the critical amplitude at which the inverted
position becomes unstable. We note that this curve4 is essentially the continuation (through infinite values of the
driving frequency) of the same branch (curve2 without friction or curve3 with friction) of period-2 steady-state
oscillations corresponding to the boundaries of instability with respect to excitation of the ordinary parametric
resonance of the non-inverted pendulum. This proves the close relationship between the parametric instability of
the non-inverted pendulum (ordinary parametric resonance) and the upper limit of the dynamic stability of the
inverted pendulum (the “flutter” oscillations).

Curve5 in Fig. 7 shows the lower boundary of dynamic stabilization of the inverted pendulum, given by the
improved criterion, Eqn. (15). In case of small drive amplitudes, the loss of stability at crossing this boundary
occurs when the effective potential well corresponding to the inverted position has zero depth. Thus, the region
of stability of the inverted pendulum occupies the shaded part of the parameter plane between curves5 and4.

7 Complicated modes of regular behavior

Figure 8. The spatial path, phase orbit, and graphs of period-18 oscillations.

One more type of regular behavior is shown in Fig. 8. This mode can be characterized as resulting from
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a period multiplication of a subharmonic resonance, specifically, in this example, as tripling of the six-order
subresonance. Comparing this figure with Fig. 4, we see that in both cases the motion is quite similar during
any cycle of six consecutive driving periods each, but in Fig. 8 the motion during each next cycle of six periods
is slightly different from the preceding cycle. After three such cycles (of six driving periods each) the phase
orbit becomes closed and then repeats itself, so the period of this stationary motion equals 18 driving periods.
However, the harmonic component whose period equals six driving periods dominates the spectrum (just like in
the spectrum of period-6 oscillations in Fig. 4), while the fundamental harmonic (frequencyω/18) of a small
amplitude is responsible only for tiny divergences between the adjoining cycles, each consisting of six driving
periods.

Figure 9. The spatial path, phase orbit, and graphs of period-10 oscillations.

Such multiplications of the period are characteristic of large amplitude oscillations at subharmonic resonances
both for the inverted and downward positions of the pendulum. Figure 9 shows a stationary oscillation with a
period that equals ten driving periods. This large amplitude motion can be treated as originating from a period-
2 oscillation (that is, from ordinary principal parametric resonance) by a five-fold multiplication of the period.
The harmonic component with half the driving frequency (ω/2) dominates the spectrum. But in contrast to the
preceding example, the divergences between adjoining cycles consisting of two driving periods each are generated
by the contribution of a harmonic with the frequency3ω/10 rather than the fundamental harmonic (frequency
ω/10) whose amplitude is much smaller.

One more example of complicated steady-state oscillation is shown in Fig. 10. This period-30 motion can
be treated as generated from the period-2 principal parametric resonance first by five-fold multiplication of the
period (resulting in period-10 oscillation), and then by next multiplication (tripling) of the period. Such large-
period stationary regimes are characterized by small domains of attraction consisting of several disjoint islands of
initial states on the phase plane. We note that it is impossible to excite these modes by a slow variation (scanning)
of a control parameter during the motion which started in some other mode: when all the parameters assume the
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Figure 10. The spatial path, phase orbit, and graphs of period-30 oscillations.

values required for such long-period regime, the pendulum occurs as a rule in a different (usually rather simple)
coexisting mode.

Other modes of regular behavior are formed by unidirectional period-2 or period-4 (or even period-8) rotation
of the pendulum or by oscillations alternating with revolutions to one or to both sides in turn. Such modes have
periods constituting several driving periods.

8 New modes of chaotic behavior

At large driving amplitudes the pendulum exhibits various chaotic regimes. Chaotic behavior of nonlinear
systems has been a subject of intense interest during recent decades, and the forced pendulum is an excellent
physical model for studying general laws of the dynamical chaos [13] – [18], [22] – [24].

Next we describe several different kinds of chaotic regimes, which, as far as we know, have not been discussed
in the literature. Poincaré mapping, that is, a stroboscopic picture of the phase plane for the pendulum taken
once during each driving cycle after initial transients have died away, gives an obvious and convenient means to
distinguish between regular periodic behavior and persisting chaos. A steady-state subharmonic of ordern would
be seen in the Poincaré map as a systematic jumping betweenn fixed mapping points. When the pendulum motion
is chaotic, the points of Poincaré sections wander randomly, never exactly repeating. Their behavior in the phase
plane gives an impression of the strange attractor for the motion in question.

Figure 11 shows an example of a purely oscillatory two-band chaotic attractor for which the set of Poincaré
sections consists of two disjoint islands. This attractor is characterized by a fairly large domain of attraction in the
phase plane. The two islands of the Poincaré map are visited regularly (strictly in turn) by the representing point,
but within each island the point wanders irregularly from cycle to cycle. This means that for this kind of motion
the flow in the phase plane is chaotic, but the distance between any two initially close phase points within this
attractor remains limited in the progress of time: The greatest possible distance in the phase plane is determined
by the size of these islands of the Poincaré map.
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Figure 11. Chaotic attractor with a two-band set of Poincaré sections.

Figure 12. Chaotic attractor with a strip-like set of Poincaré sections.

Figure 12 shows the chaotic attractor that corresponds to a slightly reduced friction, while all other parameters
are unchanged. Gradual reduction of friction causes the islands of Poincaré sections to grow and coalesce, and to
form finally a strip-shaped set occupying considerable region of the phase plane. As in the preceding example,
each cycle of these oscillations (consisting of two driving periods) slightly but randomly varies from the preceding
one. However, in this case, the large and almost constant amplitude of oscillations occasionally (after a large but
unpredictable number of cycles) considerably reduces or, vice versa, increases (sometimes so that the pendulum
makes a full revolution over the top). These decrements and increments result sometimes in switching the phase
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of oscillations: the pendulum motion, say, to the right side that occurred during even driving cycles is replaced
by the motion in the opposite direction. During long intervals between these seldom events, the motion of the
pendulum is purely oscillatory with only slightly (and randomly) varying amplitude. This kind of intermittent
irregular behavior differs from the well-known so-called tumbling chaotic attractor that exists over a relatively
broad range of the parameter space [22]. The tumbling attractor is characterized by random oscillations (whose
amplitude varies strongly from cycle to cycle), often alternated with full revolutions to one or the other side.

Figure 13. An oscillatory six-band chaotic attractor.

Figure 13 illustrates one more kind of strange attractors. In this example the motion is always purely oscilla-
tory, and nearly repeats itself after each six driving periods. The six bands of Poincaré sections make two groups
of three isolated islands each. The representing point visits these groups in alternation. It also visits the islands of
each group in a quite definite order, but within each island the points continue to bounce from one place to another
without any apparent order. The six-band attractor has a rather extended (and very complicated in shape) domain
of attraction. Nevertheless, at these values of the control parameters the system exhibits multiple asymptotic
states: The chaotic attractor coexists with several periodic regimes.

Chaotic regimes exist also for purely rotational motions. Poincaré sections for such rotational chaotic attrac-
tors can make several isolated islands in the phase plane. A possible scenario of transition to such chaotic modes
from unidirectional regular rotation lies through an infinite sequence of period-doubling bifurcations occurring
when a control parameter (the driving amplitude or frequency or the braking frictional torque) is slowly varied
without interrupting the motion of the pendulum. However, there is no unique route to chaos for more complicated
chaotic regimes described above.

9 Concluding remarks
The parametrically excited pendulum is richer in various modes of possible behavior than we can expect for

such a simple physical system. Most of these modes can hardly be called “simple.” In this paper we have touched
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only a small part of existing motions. We have suggested a clear physical explanation of subharmonic resonances
and developed an approximate quantitative theory of these modes. The spectral composition of subharmonic res-
onances is investigated quantitatively, and their low-amplitude boundaries in the parameter space are determined.
Several related modes of regular behavior (subharmonic resonances of fractional orders) are described and ex-
plained for the first time. We have shown also that “flutter” mode (destabilization of the dynamically stabilized
inverted pendulum) has common physical roots with ordinary parametric resonance (instability of the downward
position of the pendulum).

The simulations show that variations of the parameter set (dimensionless driving amplitudea/l , normalized
driving frequencyω/ω0, and quality factorQ) result in numerous different regular and chaotic types of behav-
ior. The pendulum’s dynamics exhibits a great variety of other asymptotic rotational, oscillatory, and combined
(both rotational and oscillatory) multiple-periodic stationary states as well as chaotic attractors, whose basins of
attraction are characterized by a surprisingly complex (fractal) structure. Computer simulations reveal also intri-
cate sequences of bifurcations, leading to numerous complicated chaotic regimes. Most of such motions that we
observed in simulations remained beyond the scope of this paper. They are still waiting for plausible physical ex-
planations. With good reason we can suppose that this seemingly simple physical system is almost inexhaustible.
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