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ABSTRACT

Several new types of regular and chaotic behavior of the parametrically driven pendulum are discov-
ered with the help of computer simulations. A simple physical explanation is suggested to the phenomenon
of subharmonic resonances. The boundaries of these resonances in the parameter space and the spectral
composition of corresponding stationary oscillations are determined theoretically and verified experimen-
tally. A close relationship between the upper limit of stability of the dynamically stabilized inverted pendu-
lum and parametric resonance of the non-inverted pendulum is established. Most of the newly discovered
modes are still waiting a plausible physical explanation.

1 Introduction

Simple dynamical systems for which our intuition may seem to be well developed can behave in very compl
cated and even irregular ways. This occurs in spite of exact nature of governing physical laws and determinis
character of relevant differential equations.

This paper examines different kinds of extraordinary behavior of a parametrically driven pendulum — a simpl
system which serves a paradigm to contemporary nonlinear physics. Additionally, the differential equation fc
the pendulum is frequently encountered in various branches of science and engineering.

Depending on the excitation frequency and amplitude of the pendulum pivot point, this seemingly simpl
system exhibits a rich variety of nonlinear phenomena characterized by amazingly different types of motion. Sor
modes of such parametrically forced pendulum are quite simple indeed and agree well with our intuition, whil
others are very complicated and counterintuitive. Although after Stephenson [1] this system has been permanel
investigated during almost a century, a lot of new modes of its regular and chaotic motions are discovered or
recently.
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An interesting feature in the behavior of the parametrically driven rigid pendulum is the dynamic stabilizatior
of its inverted position. This intriguing system, widely known as “Kapitza’s pendulum” [2], attracted attention
of many researchers, and the theory of the phenomenon may seem to be well elaborated (see, for example, |
Nevertheless, more and more new features in its behavior are reported regularly [4] — [12], [20]. Among rece
new discoveries the most significant are the destabilization of the (dynamically stabilized) inverted position :
large driving amplitudes through excitation of period-2 (“flutter”) oscillations [9]- [10], and the existenae of
periodic “multiple-nodding” regular oscillations [19].

Behavior of the pendulum whose axis is forced to oscillate with a frequency from certain intervals (and witf
large enough amplitude) can be chaotic. The pendulum makes several revolutions in one direction, then swir
for a while with permanently changing amplitude, then rotates again in the former or in the opposite direction, ar
so forth. For other values of the driving frequency and/or amplitude, the chaotic motion can be purely oscillator
without revolutions. For example, the pendulum can make one oscillation during each two driving periods, but |
each next cycle the motion (the phase orbit) is slightly (and randomly) different from the previous cycle. Chaoti
modes of the parametrically driven pendulum have been intensively investigated over past decades [13] — [18].

The overwhelming majority of publications related to the parametrically driven pendulum are highly mathe:
matical in nature and sometimes obscure the physical nature of the phenomenon under investigation. We pre:
in this paper quite simple qualitative physical explanations for several extraordinary modes of its regular behavic
In particular, we show that the excitation of period-2 “flutter” mode is closely related with the commonly known
conditions of parametric instability for the non-inverted pendulum, and that the so-called “multiple-nodding” os:
cillations (which exist for both the inverted and downward positions) can be treated as high order subharmor
resonances of the parametrically driven pendulum. The spectral composition of the subharmonic resonance:
the low-amplitude limit is investigated quantitatively, and the boundaries of the region in the parameter space &
determined in which these resonances can exist. The conditions of the inverted pendulum stability are determir
with a greater precision compared to the previous results.

Several new types of regular and chaotic behavior are reported for the parametrically driven pendulum, e
panding this beautiful collection. The new modes were discovered with the help of computer simulations. Mo:
of these modes are rather exotic and counterintuitive. They are still waiting a plausible physical explanatio
Understanding such complicated behavior of this simple system is certainly a challenge to our physical intuitiol

2 The Physical System

For simplicity we consider a light rigid rod of lengthvith a heavy small bob of masson its end and assume
that the rod has zero mass, so that all the mass of the pendulum is concentrated in the bob. The force of gra
mg provides a restoring torque, given bymglsing, with a value proportional to the sine of angular deflection
¢ of the pendulum from the equilibrium position. When the axis of the pendulum is constrained to move witf
acceleration along the vertical line, it is convenient to analyze the motion in the non-inertial frame of referenc
associated with this axis. Due to the acceleration of this frame the force of inrarias added to the force of
gravity, wherez(t) is the time-dependent vertical coordinate of the axis. The torque of this farétsing must
be added to the differential equation fip(t).

If the axis of the pendulum is forced to execute a given harmonic oscillation along the vertical line with &
frequencyw and an amplitude,
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z(t) =asinwt or z(t) =acosut, (1)

the force of inertiaF,(t) exerted on the bob also has a sinusoidal dependence on time. This force is directe
downward during the time intervals for whictt) < O (i.e., when the axis is below the middle point of its
oscillations), which is equivalent to some strengthening of the force of gravity, and upward when the axis |
over the middle point, which is equivalent to some weakening of the gravitational force. When the frequenc
and/or amplitude of the pivot are large enough (wheR > g), for some part of the period the apparent gravity

is even directed upward.

On the basis of this approach, taking into account the periodic variations of the apparent gravity, we ce
easily explain, say, the physical reason for the ordinary parametric swinging of the pendulum, when its pivot
driven vertically with a frequency approximately twice the frequency of natural oscillations. The time variations
of the force of inertia give a clear physical explanation to the growth of initially small oscillations at conditions
of parametric resonance. When the oscillating pivot is below its middle position, this additional force is directe
downward, and vice versa. We can treat the effect of this varying force as a periodic modulation of the gravitation
force. Let the pendulum move from the utmost deflection toward the lower equilibrium position while the pivot
in its constrained oscillation is below the mid-point. Due to the additional apparent gravity the pendulum gain
a greater speed than it would have gained in the absence of the pivot's motion. During the further motion of tt
pendulum away from the equilibrium position, the pivot is above its mid-point, so that the force of inertia reduce
the apparent gravity. Thus the pendulum reaches a greater angular displacement than it would have reac
otherwise. During the second half-period of the pendulum’s motion the swing increases again, and so on, ur
the stationary motion is established due to violation of the resonance conditions at large swing.

The simulation of the system is based on numerical integration of the exact differential equation for the mc
mentary angular deflectigp(t). This equation includes, beside the torque of the force of gravity, the instantaneous
value of the torque exerted on the pendulum by the force of inertia that depends explicitly dan time

B+ 2y + wB(1— Ti‘g cosut) sing — 0. 2)
0

The second term takes into account the braking frictional torque, assumed to be proportional to the moment:
angular velocityp in the mathematical model of the simulated system. The damping conpstardlated to the
dimensionless quality fact@ characterizing the role of viscous frictio@ = wp/2y.

We note that oscillations about the inverted position can be formally described by the same differential equ
tion, Eqn. (2), with negative values ojg In other words, we can conside% =g/l in Egn. (2) as a control
parameter whose variation is physically equivalent to changing the gravitationalmfayeserted on the pen-
dulum. When this control parameter is diminished through zero to negative values, the constant (gravitation:
torque in Eqn. (2) first turns to zero and then changes its sign to the opposite. Such a “gravity” tends to bring t
pendulum into the inverted positign= 11, destabilizing the downward positign= 0 of the unforced pendulum:
if in EQn. (2)00% < 0, the inverted position is equivalent to the downward position with the positive valtm%@lf
the same magnitude.
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The force of inertia, arising due to constrained oscillations of the axis, explains, in particular, the pendulur
stabilization in the inverted position. Details of the physical mechanism responsible for the dynamical stabilizatic
of the inverted pendulum can be found in [20]. The principal idea is utterly simple: Although the mean value o
the force of inertids, (t), averaged over the short period of these oscillations, is zero, the averaged over the peric
value of itstorqueabout the axis is not zero. Figure 1 explains the origin of this torque.

Figure 1. Positions of the pendulum rod and the forces of indriieand F,, exerted on the pendulum in the non-inertial
reference frame (lower part of the figure) at the extreme positlaral 2 of the oscillating axig\.

When the axis is displaced downward (to positi)rirom its mid-point, the force of inerti&; exerted on the
bob is also directed downward. In the other extreme posifitime force of inertigm has an equal magnitude
and is directed upward (see figure 1). However, the torque of the force of inertia in pdsisigreater than in
position1 because tharm of the force in this position is greater. Also the mean (averaged over the period) value
of the torque is not zero. The reason is that both the fexge) and thearm of this force vary with time in the
same way synchronously with the axis’ vibrations. This non-zero mean torque tends to align the pendulum alo
the direction of forced oscillations of the axis. For given values of the driving frequency and amplitude, the mea
torgue of the force of inertia depends only on the mean agiéethe pendulum’s deflection from the direction
of the pivot’s vibration.

We can consider the angular motion of the pendulpt) as a superposition of two components: a “fast”
(or “vibrational”) component, and “slow” or “smooth” component described by the aigie ($(t)), whose
variation during a period of constrained vibrations is small. If we use a stroboscopic illumination with a shor
interval between the flashes that equals the period of constrained vibrations of the pendulum’s axis, we can
only this slow component of the motion. This motion can be described by a slow-varying fug¢tiosatisfying
the following approximate differential equation if friction is ignored (see [20]):

. 2 . 1a2 2 .
() = —exsing — 5 > w* cospsiny. 3)

We can introduce an effective potentia{W) that governs the smooth motion of the pendulum averaged over
the rapid oscillations. This potential consists of two palggy) andUi () that describe the influence of the
force of gravity and the force of inertia respectively:
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U () = Ug (W) + Un (1) = mo(1— costp) + ;mea?(1 - cosap). @

This effective potential was first introduced by Landau [3], and derived by various different methods after
wards (see, for example, [11], [12], or [20]). The graph&Jgf(y) andUin () are shown in Fig. 2. They both
have a sinusoidal shape, but the periotJaf ) is just one half of the period &y (). Their minima atp = 0
coincide, thus generating the principal minimum of the total potential funttigp) = Uiet(W). This minimum
corresponds to the stable lower equilibrium position of the pendulum. But the next minimug{¢] is located
aty = 1, whereUg () has its maximum corresponding to the inverted position of the pendulum.

Opnax U(w) Ormax
> ; Uet /! 4
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Figure 2. Graphs of the gravitational potential enetdy, mean potential enerdyi, in the field of the force of inertia, and of
the total potential energyot(W) for the pendulum with an oscillating axia®w?/gl = 4.8).

As follows from (4) or (3), the mean torque of the force of inertia can exceed in magnitude the torque of the
gravitational force tending to tip the pendulum down, when the following condition is fulfilled:

a’w? > 2g|. (5)

When this criterion of dynamical stabilization, Eqn. (5), is fulfilled, the maximum admissible angular deflec-
tion from the inverted vertical positidfyax = TT— Yo for which the pendulum will return to this position, is given
by the following equation (valid for any values @&f,x that do not exceett/2):

2gl oy | 2
COSemaX: —COSlIJO - m - 2 (65) . (6)

Being deflected from the downward vertical position (and from the upward by an angle that does not exces
Bmax), the pendulum will execute relatively slow oscillations about this equilibrium position. This motion can be
described by a slow-varying functiafp(t) satisfying differential equation (3). The frequenciag, and Wqown
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of small slow oscillations about the inverted position and the lower vertical position are given by the following
expressions:

(x)ﬁp: % (?)2(*)2_(*%7 wgown: % (?)2(’32""(0(2)- (7)

Substitutingwg = 0 into these formulas, we get the expressiag,y = w(a/l)/v/2, valid ata/l < 1 for the
frequency of small slow oscillations of the pendulum with vibrating axis in the absence of the gravitational force

3 Subharmonic resonances of high orders

The natural slow oscillatory motion in the effective potential well is almost periodic (exactly periodic in the
absence of friction). Executing these damped slow oscillations, the pendulum gradually approaches the equil
rium position (either dynamically stabilized inverted position or ordinary downward position). However, when
the driving amplitude and frequency lie within certain ranges, the pendulum can be trappegariadic limit
cycle locked in phase to the rapid forced vibration of the axis. In such oscillations the phase trajectory repec
itself aftern driving periodsT. Since the motion has periodl, and the frequency of its fundamental harmonic
equalsw/n (wherew is the driving frequency), this phenomenon can be called a subharmonic resonarite of
order. For the inverted pendulum with a vibrating pivot, periodic oscillations of this type were first described by
Acheson [19], who called them “multiple-nodding” oscillations.

Such oscillations, which are synchronized with the excitation frequency, can occur also about the downwa
position and, in the absence of gravity, about any of the two equivalent dynamically stabilized equilibrium posi
tions (see [21]). An example of such stationary oscillations whose period equals eight periods of the axis is shoy
in Fig. 3.

The left-hand upper part of the figure shows the spatial trajectory of the pendulum’s bob at these multiple
nodding oscillations. The left-hand lower part shows the closed looping trajectory in the phasedplane (
Right-hand side of Fig. 3, alongside the graphgf and$(t), shows also their harmonic components and the
graphs of the pivot oscillations. The fundamental harmonic whose period equals eight driving periods dominat
the spectrum. We may treat it as a subharmonic (as an “undertone”) of the driving oscillation. This harmoni
describes the discussed above smooth compapghbf the compound period-8 oscillation.

The approximate approach based on the effective potential (see Fig. 2) for the slow motion provides a simy
gualitative physical explanation for such an extraordinary and even counterintuitive behavior of the pendulur
Moreover, for subharmonic resonances witly> 1 this approach yields rather accurate quantitative results.

Indeed, since the natural slow oscillatory motion in the effective potential well is almost periodic, we suppos
that a subharmonic resonance of ordean occur if one cycle of this slow motion covers approximanedyiving
periods. In other words, the driving frequer®yshould be close to an integer multipief the natural frequency
of slow oscillations near either the inverted or the ordinary equilibrium positioa:nwyp Or W = NWgown. IN this
case the phase locking can occur, in which one cycle of the slow motion is completetlyduring n driving
periods. Synchronization of these modes with the oscillations of the pivot (phase locking) creates conditions f
systematic supplying the pendulum with the energy needed to compensate for dissipation, and the whole proc
becomes exactly periodic.

As an example how the approach based on the effective potential allows us to explain properties of the
n-periodic oscillations and to predict conditions at which they can occur, we consider first a simple special ca:
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Figure 3. The spatial path, phase orbit with Poingaections, and graphs of stationary period-8 oscillations. The graphs

are obtained by a numerical integration of the exact differential equation, Eqn. (2), for the momentary angular deflectic
¢(t) (with wp = 0, a/l = 0.265 Q = 400. Time is indicated in drive periods. Thin lines show separate harmonics. The

fundamental harmonic with the frequenay' 8 dominates the spectrum. The 7th and 9th harmonics have nearly equal
amplitudes. Graphs of the axis motierz(t) and—Z(t) are also shown.

of the pendulum in the absence of gravity, or, which is essentially the same, the limiting case of very high drivin
frequenciesw > wp (w/wy — ). In this limit both equilibrium positions (ordinary and inverted) are equiva-
lent, and the normalized driving amplitude= a/I is the only physical parameter to be predicted as a required
condition for the subharmonic resonance of ondler

At wp = 0 (that is, in the absence of gravity), according to Eqn. (7), the frequency of slow oscillations is
given by wjow/w = M/+/2, whence for the subharmonic resonance of orgeat which the period of the slow
motion equal$ periods of the axisymin = v/2/(w/wsiow) = v'2/n. For the subharmonic resonance of 8th order
(n = 8) shown in Fig. 3 we findnmi, = v/2/8 = 0.177. This value is rather close to the predictions of a more
precise theory of the boundaries for these modes based on the linearized differential equation of the system (
Eqn. (12) below), which gives for such period-8 small oscillations in the absence of gravity the normalized drivin
amplitudea/l = 0.173 The latter value agrees well with the simulation experiment in conditions of small angular
excursions of the pendulum.

In the presence of gravity, assumitgown up = /N (ndriving cycles during one cycle of the slow oscillation),
we find for the minimum normalized driving amplitudes (for the boundaries of the subharmonic resonances) tt
values

= /2( % 5), ®

Since negative values o% can be treated as referring to the inverted pendulum, the boundaries of subharmoni
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resonances can be expressed both for the inverted and non-inverted pendulum by the same figymuta:

2(1/n2 — k), where parameted = (wp/w)? is negative for the inverted pendulum. The limit of this expression
atn — oo gives the mentioned earlier approximate criterion of stability of the inverted pendulum4s)= v —2k
(wherek < 0).

Being based on a decomposition of motion on slow oscillations and rapid vibrations with the driving frequency
Eqn. (8) is approximate and valid if the amplitude of constrained vibration of the axis is small compared to th
pendulum’s lengthg < |). Moreover, in the presence of gravity the driving frequency must be much greater than
the frequency of small natural oscillations of the pendulwis{ wy). These restrictions mean that we should not
expect from the approach discussed here to give an exhaustive description of the parametrically driven pendul
in all cases.

The simulations show clearly (see graphs in Fig. 3) that the momentary deflectionpdtigtan be repre-
sented approximately as a superposition of the slow varying mean @ftgland the high frequency term whose
angular amplitude is proportional to sineift):

O(t) = W(t) — (z/1)siny(t) = W(t) — (a/l) sin(t) cosu. (9)

For small angular excursions of the pendulum we can reeung by g in the second term of Eqgn. (9), and
assume for the slow motion the following sinusoidal time dependefi¢e: = Asin(wt/n) with the frequency
w/n. This means that the spectrum of small amplitude stationgrgriod oscillations consists primarily of the
fundamental harmoni&sin(wt /n) with the frequencyo/n, and two high harmonics of the orders- 1 andn+ 1:

d(t) = Asin(%ot) — mAsin(%t) coswt =

. W mA . n—-1 mA . n+1
Asm(ﬁt)—TSln(th)—i—Tsm(T(ot). (10)

This spectral composition is clearly seen from the plots in Fig. 3. While the pendulum is crossing the equ
librium position, both high harmonics add in opposite phases and thus almost don’t distort the smooth motic
(described by the principal harmonic). Near the utmost deflections, the phases of high harmonics coincide, &
thus here their sum causes the most serious distortions of the smooth motion.

According to Eqgn. (10), both high harmonics have equal amplitod&®. However, we see from the plots in
Fig. 3 that these amplitudes are slightly different. Therefore we can try to improve the approximate expression f
¢(t), Egn. (10), as well as the theoretical values for the lower boundaries of subharmonic resonances, Eqn. (
by assuming for the possible solution a similar spectrum but with unequal amplitfgdgesandA,. 1, of the two
high harmonics (fon > 2, the case oh = 2 will be considered separately):

o (1) :Alsin(%)t)+An_1sin(n%1wt)+An+1$in(inlwt). (11)
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Since oscillations at the boundaries have infinitely small amplitudes, we can use instead of Eqn. (2) the fc
lowing linearized (Mathieu) equation:

& + 2y + (i — mw?sinwt )¢ = 0. (12)

Substitutingd(t), Eqn. (11), into Eqn. (12) witk= 0, and expanding the products of trigonometric functions,
we obtain a system of approximate equations for the coeffickentd, 1 andAn.1:

2(kr? — 1)Ap + mrfAn 1 — mrfAn 1 = 0,
mreA; +2[n?(k—1)+2n—1)A,_1 = 0, (13)
—mreA; +2[n?(k—1) —2n—1]A,.1 = 0.

The homogeneous system has a nontrivial solution if its determinant equals zero. This condition yields ¢
equation for the corresponding critical (minimal) driving amplitidg,, at whichn-period modep(t), Eqn. (11),
can exist. Solving the equation, we find:

2 [nPk(k—1)2—n*3k?+1) + n?(3k+2) — 1]
mﬁ‘i” T [n2(1_ k) +1] . (14)

Then, for this critical driving amplituden,n, the fractional amplitude8,,_1/A; andAn+1/Aq of high har-
monics for a given ordar can be easily found as the solutions to the homogeneous system of equations, Eqs. (13
The limit of myin, EQn. (14), ah — o gives an improved formula for the lower boundary of dynamic stabi-

lization of the inverted position instead of the commonly known approximate critexign= /—2k, Eqn. (5):

Min = /= 2K(1-K), k= —(wo/w)?= ~g/(Iw?) <O (15)

As follows from Eqn. (14), subharmonic oscillations of a given oméor n > 2) are possible fok < 1/r?,
that is, for the driving frequencg > nuwy. If the driving frequencyw is increased beyond the valaey (i.e.,
ask is decreased from the critical valdgn? towards zero), the threshold driving amplitude rapidly increases.
The limit of very high driving frequencyuf/wp — ), in which the gravitational force is insignificant compared
with the force of inertia (or, which is essentially the same, the limit of zero grasjw — 0), corresponds to
k = 0. Negativek values describe the transition through zero gravity to the “gravity” directed upward, which is
equivalent to the case of an inverted pendulum in ordinary (directed downward) gravitational field. Therefore fc
negativek values Eqn. (14) gives the threshold driving amplitudes for subharmonic resonances of the inverte
pendulum.

Further details of subharmonic resonances are described in [21]. Here we would like to emphasize that st
harmonic resonances, which have been discovered by Acheson (see [19]) in investigations of the dynamice
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stabilized inverted pendulum with a vibrating pivot (“multiple-nodding” oscillations), are not specific for the in-
verted pendulum. They can be executed also (at appropriate values of the driving parameters) about the ordin
(downward) equilibrium position. Actually, the origin of subharmonic resonances is independent of gravity: sim
ilar “multiple-nodding” oscillations synchronized with the pivot can occur also in the absence of gravity abou
any of the two equivalent dynamically stabilized equilibrium positions. Since most peculiarities of these counte
intuitive modes are not related to the force of gravity, they can be physically explained when they are observed
their purest form in the absence of gravity, being described by Eqn. (2)with 0.

According to Eqgn. (14), the following values of the normalized driving amplitudes correspond to the threshol
conditions at zero gravityk(= 0):

V2(r2 - 1)

PVETL (16)

Mmin =

The fractional amplitudesy,_1/A; and A,+1/A; of the most important high harmonics ¢ft) [expressed
approximately by Eqn. (11)] for the case of zero graviky<0) are given by the following formulas:

A1 n+1 Any1 n—-1
Al V2Vi2+in-1) A V2V +iin+1)

(17)

For subharmonic resonances of high orders1), Eqn. (16) yields the approximate valogi, ~ v/2/n (in
the case of zero gravity) obtained earlier with the help of the simple approach which explains the physical natu
of n-order subharmonic resonance and treats its condition as the coincidendevafg periods with one period
of the smoothed, slow motion of the pendulum near the bottom of the effective potential well. The fractiona
amplitudes of both high harmonids,_1/A; andAn;1/A1, given by Egn. (17), ab > 1 are almost equal and
approach to the common valdg(1/2n) = myin/2, in accordance with equation (10) that describestperiod
subharmonic oscillations as a superposition of the slow and rapid motions.

For the boundariesy,in of subharmonic resonances in cases of not very high orgdggn. (16) gives im-
proved theoretical values, as well as Eqn. (17) gives improved values for the (non-equal) fractional amplitud
of high harmonicsA,_1/A; and A 1/A;1. For the period-8 oscillations in the absence of gravibg £ 0),

Eqgn. (16) yields for the critical value of the driving amplitudgl = mmin, = 63/(32v/130) = 0.173 Equa-

tions (17) yield for the fractional contributions of the 7th and 9th harmoAig&; = 9/(7v/130) = 0.113

Ag/A1 = 7/(9v/130) = 0.068 All these theoretical values agree perfectly well with the simulations of period-8
small oscillations based on numerical integration of the exact differential equation of the system, Eqn. (2). W\
have observed also a perfect agreement between theoretical and experimental results for subharmonic resone
with smaller values of.

4 Overlapping of subharmonic resonances and their spectral composition
If the drive amplitude exceeds the threshold value for some subharmonic resonance af gidem by
Eqgn. (14), the pendulum, being excited to this mode, executes in its slow motion finite angular excursions over t
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slanting slopes of the effective potential well, Fig. 2. Due to non-parabolic shape of the potential well, this slov
motion Y(t) is not purely sinusoidal, contrary to our assumption used in Eqn. (10). This causes the appearan
of additional spectral components. For the oscillations of a large swing shown in Fig. 3, the contribution of th
3rd harmonic to the spectrum is noticeable. Moreover, because the smooth motion is executed in the effect
potential well with a “soft” restoring force, the period becomes longer as the amplitude is increased. Therefo
large-amplitude period-8 oscillations shown in Fig. 3 (their swing equdl} &Xur at a considerably greater
value of the driving amplitudea(= 0.265l) than the critical (threshold) valug,i, = 0.173l.

By virtue of the mentioned above dependence of the period of non-harmonic smooth motion on the swin
several modes of subharmonic resonance with different valuascah coexist at the same amplitude and fre-
quency of the pivot. Indeed, the period of a slow non-harmonic oscillation with some finite amplitude can b
equal to, say, six driving periods, while the period of a slow oscillation with a somewhat greater amplitude in th
same non-parabolic potential well can be equal to eight driving periods.

g mA o
+ A A
X
~ Y A
N
\% 0 U ®
\)\f\/ 0 1

Figure 4. The spatial path, phase orbit with Poineaections, and graphs of stationary period-6 oscillations. The graphs are
obtained by a numerical integration of the exact differential equation, Eqn. (2), for the momentary angular ddfi{ection
(with wp = 0, a/l = 0.265 Q = 400). Thin lines show separate harmonics. The fundamental harmonic with the frequency
w/6 dominates the spectrum. The 5th and 7th harmonics have noticeable amplitudes. Graphs of the axiszftptonl

—2(t) are also shown.

Figure 4 shows the simulation of such period-6 mode, coexisting with the mode shown in Fig. 3 (obtaine
at identical parameters of the system). That is, both smooth motions occur in the same effective potential we
In which of these competing modes is the pendulum eventually trapped in a certain simulation, depends on t
starting conditions. The set of initial conditions that leads, after transients decay, to a given dynamic equilibriut
(to the same steady-state periodic motion, or attractor) in the limit of large time, constitutes the basin of attractic
of this attractor. The coexisting periodic motions in Figs. 3 and 4 represent competing attractors and are charact
ized by different domains of attraction. The influence of the non-linear character of Egn. (3) for the slow motiot
of the pendulum on the critical driving amplitude and spectral composition of resonant oscillations is discusse
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in [21] with more detalil.

Friction introduces a phase shift between forced oscillations of the pivot and harmonics of the steady-ste
n-periodic motion of the pendulum. By virtue of this phase shift the pendulum is supplied with energy neede
to compensate for frictional losses. With friction, the direct and backward spatial paths of the pendulum do n
coincide, and the symmetry of the phase trajectory with respect to the ordinate axis is destroyed. This is clea
seen from Figs. 3 or 4 for subharmonic resonances in the presence of weak friction.

5 Subharmonic resonances of fractional orders

In this section, we discuss new modes of regular behavior of the parametrically driven pendulum, akin to tf
above-described subharmonic resonances. We have discovered these modes in simulation experiments and b
described for the first time in [21].
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Figure 5. The spatial path, phase orbit, and graphs of stationary oscillations that can be treated as a subharmonic resone
of a fractional order 8/3. The third harmonic (frequeoy/8) dominates the spectrum.

Figure 5 shows a regular period-8 motion of the pendulum, which can be characterized as a subharmonic r
onance of a fractional order, specifically, of the order 8/3 in this example. Here the amplitude of the fundament
harmonic (whose frequency equalg8) is much smaller than the amplitude of the third harmonic (frequency
3w/8). This third harmonic dominates the spectrum, and can be regarded as the principal one, while the fu
damental harmonic can be regarded as its third subharmonic. Considerable contributions to the spectrum
given also by the 5th and 11th harmonics of the fundamental frequency. Approximate boundary conditions f
small-amplitude stationary oscillations of this typg 3-order subresonance) can be found analytically from the
linearized differential equation by a method similar to that used above-éoder subresonance: we can try as
¢(t) a solution consisting of spectral components with frequerig®, (n— 3)w/n, and(n+ 3)w/n:
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d(t) :Agsin(gu)t)+An3sin(Ln3wt)+An+3sin(%3wt). (18)

Substituting this trial functiom(t) into Eqn. (12) (withy = 0) and expanding the products of trigonometric
functions, we obtain a system of equations for the coeffici@gisAn_3 and A, 3. Condition of existence of a
non-trivial solution to the system yields the following expression for the minimal driving amplitude:

2_ 2
i = VAT =) (19)
n“vnc+3
(Compare Eqgn. (19) with a similar expression, Eqn. (16), for the critical driving amplitude of the integer-ordel
subharmonic resonances.) The analytical results of calculatioms>d® agree well with the simulations, espe-
cially if one more high harmonic is included in the trial functip(t), Eqn. (18). If the driving amplitude exceeds
the critical value, the angular excursion of the pendulum at these modes increases, and additional harmor
appear in its spectrum.

6 Principal parametric resonance and the upper boundary of stability in the inverted state

For principal parametric resonance, two driving cycles are executed during one period of stationary oscill:
tions. This means that we can treat it as a subharmonic resonance of the second-ergeror smalin values
the effective potential approach is not applicable because in such cases the period of “smooth” motion conta
only a few driving periods. The “fast” component of motion, whose frequency foR2 is only twice the driving
frequency, is not fast enough for good averaging in transition to the effective potential. Although in this cas
we cannot use the effective potential, the physical explanation of instability of the the downward position (whicl
leads to excitation of principal parametric resonance) is quite straightforward. Also the quantitative theoretic
expressions for the boundaries of the instability region in the plaren (driving frequency — drive amplitude)
are easily available with the help of standard methods (see, for example, [3]).

However, the treatment of principal parametric resonance as a subharmonic resonance of a definite or
n= 2 leads us to the conclusion that a similar phenomenon is possible not only for the downward position of tr
pendulum, but also for the dynamically stabilized inverted pendulum, as well as for the pendulum with oscillatin
axis in the absence of gravity, just like the above-discussed subharmonic resonances wigine possible in all
these cases. Indeed, when the amplitadé the pivot vibrations is increased beyond certain critical valys;,
the dynamically stabilized inverted position of the pendulum loses its stability. After a disturbance the pendulur
does not come to rest in the up position, no matter how small the release angle, but instead eventually settles in
finite amplitude steady-state oscillation about the vertical position at frequefhalf the driving frequency).

This loss of stability of the inverted pendulum has been first described by Blac&bal§8] (the “flutter” mode)

and demonstrated experimentally in [9]. (The latest numerical investigation of the bifurcations associated with tt
stability of the inverted state can be found in [18].) Next we show that this “flutter” mode and ordinary parametric
resonance of the pendulum in the downward position belong to the same branch (in the parametess-pfane

of possible stationary oscillations.
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Figure 6. Stationary double-period oscillations occurring over the upper boundary of dynamic stability in the absence ¢
gravity (the “flutter” mode). The spectrum consists of the fundamental harmonic (frequg@Fyand the third harmonic
(frequency3w/2). The graphs are obtained by a numerical integration of the exact differential equation for the momentar
angular deflectio(t), Eqn. (2) withwy = 0, a/l = 0.56, Q = 10.0.

The graphs and the double-lobed phase trajectory of such oscillations are shown in Fig. 6. The simulati
shows a very simple spectral composition: the fundamental harmonic whose frequencywfudslf the
driving frequencyw) with an addition of the third harmonic with the frequeryy/2. Therefore the boundary
of dynamic stability can be found directly from the linearized differential equation of the system, Eqn. (12), by
including these harmonics into the trial function:

d(t) = Arcoqwt/2) + Azcoq3uwt/2). (20)

Thus we get a system of homogeneous equations for the coeffiéigatsi Az, which has a nontrivial solution
when its determinant equals zero. This requirement yields a quadratic equation for the desired normalized criti
driving amplitudeamax/!| = Mmax- The relevant root of this equation (in the casg= 0 which corresponds to
the absence of gravity or to the high frequency limit of the pivot oscillations with gravity}nis = 3(v/13—

3)/4 = 0.454, and the corresponding ratio of amplitudes of the third harmonic to the fundamental one equal
Az/A; = (v/13-3)/6=0.101

A somewhat more complicated calculation in which the higher harmonics (up to the 7i)iare taken
into account yields fommax andAz/A; the values that coincide (within the assumed accuracy) with those cited
above. These values agree well with the simulation experiment in conditions of the absence of ggpwt)
and very small angular excursion of the pendulum. When the normalized amplitude of thepivatl exceeds
the critical valuemyax = 0.454, the swing of the period-2 “flutter” oscillation (amplitudg of the fundamental
harmonic) increases in proportion to the square root of this ex@gss: \/a— amax. This dependence follows
from the nonlinear differential equation of the pendulum, Eqn. (23irifh is approximated a$ — ¢3/6, and
agrees well with simulation experiments for amplitudes ug3o
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As the normalized amplitude = a/| of the pivot is increased over the valQ&55 the symmetry-breaking
bifurcation occurs: The angular excursions of the pendulum to one side and to the other become different, c
stroying the spatial symmetry of the oscillation and hence the symmetry of the phase orbit. As the pivot amplituc
is increased further, aften= 0.565the system undergoes a sequence of period-doubling bifurcations, and finally,
atm = 0.56622(for Q = w/2y = 20), the oscillatory motion of the pendulum becomes replaced, at the end of a
very long chaotic transient, by a regular unidirectional period-1 rotation.

Similar theoretical investigation of the boundary conditions for period-2 stationary oscillations in the presenc
of gravity allows us to obtain the dependence of the critical (destabilizing) amplitud@/I of the pivot on the
driving frequencyw. In terms ofk = +(wyo,/w)? this dependence has the following form:

Mnax = (v/117— 232+ 80k2 — 9+ 4K) /4. (21)
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Figure 7. The boundaries of parametric instability — driving amplitude- a/l versus normalized driving frequency.and

2— boundaries of the principal interval of parametric instabiliby~{ 2wy) for the non-inverted pendulum in the absence of
friction, 3— the same with friction@ = 5.0), 4 and5 - the upper and lower boundaries of dynamic stability for the inverted
pendulum.

The diagram in Fig. 7 shows these boundaries of instability. For the downward position of the pendulum, in th
absence of friction the critical amplitude given by Eqgn. (21) tends to zero as the frequency of the pivot approach
20 from either side (curved and 2). This case (small vertical oscillations of the pivot with the frequency
approximately twice the natural frequency of the pendulum) corresponds to ordinary parametric resonance, -
which a very clear physical explanation can be suggested. If the driving frequency deviatexdsomfinite
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driving amplitude is required for infinitely small steady parametric oscillations even in the absence of friction
Curve 3 shows in the parameters plarng/(x, a/l) the region of principal parametric resonance with friction
(for Q =5.0). The non-inverted vertical position of the pendulum with the pivot vibrating at frequ2sgjoses
stability when the normalized amplitude of this vibration exceeds the threshold valyQ@f This curve almost
merges with curved and2 as the frequency deviates from the resonant valgey. In the high-frequency limit,

for which the role of gravity is negligible, the normalized critical pivot amplitadetends to the above-indicated
valuea/l = 3(v/13— 3)/4 = 0.454 that corresponds to the destabilization of the two symmetric equilibrium
positions in the absence of gravity.

Curve4 of this diagram corresponds to destabilization of the inverted pendulum by excitation of the “flutter”
oscillations. The smaller the frequency of the pivot, the greater the critical amplitude at which the invertes
position becomes unstable. We note that this cdrgeessentially the continuation (through infinite values of the
driving frequency) of the same branch (cu@without friction or curve3 with friction) of period-2 steady-state
oscillations corresponding to the boundaries of instability with respect to excitation of the ordinary parametri
resonance of the non-inverted pendulum. This proves the close relationship between the parametric instability
the non-inverted pendulum (ordinary parametric resonance) and the upper limit of the dynamic stability of th
inverted pendulum (the “flutter” oscillations).

Curve5in Fig. 7 shows the lower boundary of dynamic stabilization of the inverted pendulum, given by the
improved criterion, Egn. (15). In case of small drive amplitudes, the loss of stability at crossing this boundar
occurs when the effective potential well corresponding to the inverted position has zero depth. Thus, the regi
of stability of the inverted pendulum occupies the shaded part of the parameter plane betweef andes

7 Complicated modes of regular behavior
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Figure 8. The spatial path, phase orbit, and graphs of period-18 oscillations.

One more type of regular behavior is shown in Fig. 8. This mode can be characterized as resulting fro
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a period multiplication of a subharmonic resonance, specifically, in this example, as tripling of the six-orde
subresonance. Comparing this figure with Fig. 4, we see that in both cases the motion is quite similar durit
any cycle of six consecutive driving periods each, but in Fig. 8 the motion during each next cycle of six period
is slightly different from the preceding cycle. After three such cycles (of six driving periods each) the phas
orbit becomes closed and then repeats itself, so the period of this stationary motion equals 18 driving periot
However, the harmonic component whose period equals six driving periods dominates the spectrum (just like
the spectrum of period-6 oscillations in Fig. 4), while the fundamental harmonic (frequetid) of a small
amplitude is responsible only for tiny divergences between the adjoining cycles, each consisting of six drivin
periods.
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Figure 9. The spatial path, phase orbit, and graphs of period-10 oscillations.

Such multiplications of the period are characteristic of large amplitude oscillations at subharmonic resonanc
both for the inverted and downward positions of the pendulum. Figure 9 shows a stationary oscillation with
period that equals ten driving periods. This large amplitude motion can be treated as originating from a perio
2 oscillation (that is, from ordinary principal parametric resonance) by a five-fold multiplication of the period.
The harmonic component with half the driving frequenay' Z) dominates the spectrum. But in contrast to the
preceding example, the divergences between adjoining cycles consisting of two driving periods each are genere
by the contribution of a harmonic with the frequer@y/10 rather than the fundamental harmonic (frequency
w/10) whose amplitude is much smaller.

One more example of complicated steady-state oscillation is shown in Fig. 10. This period-30 motion ca
be treated as generated from the period-2 principal parametric resonance first by five-fold multiplication of tr
period (resulting in period-10 oscillation), and then by next multiplication (tripling) of the period. Such large-
period stationary regimes are characterized by small domains of attraction consisting of several disjoint islands
initial states on the phase plane. We note that it is impossible to excite these modes by a slow variation (scanni
of a control parameter during the motion which started in some other mode: when all the parameters assume
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Figure 10. The spatial path, phase orbit, and graphs of period-30 oscillations.

values required for such long-period regime, the pendulum occurs as a rule in a different (usually rather simpl
coexisting mode.

Other modes of regular behavior are formed by unidirectional period-2 or period-4 (or even period-8) rotatio
of the pendulum or by oscillations alternating with revolutions to one or to both sides in turn. Such modes hau
periods constituting several driving periods.

8 New modes of chaotic behavior

At large driving amplitudes the pendulum exhibits various chaotic regimes. Chaotic behavior of nonlinea
systems has been a subject of intense interest during recent decades, and the forced pendulum is an exce
physical model for studying general laws of the dynamical chaos [13] — [18], [22] — [24].

Next we describe several different kinds of chaotic regimes, which, as far as we know, have not been discuss
in the literature. Poinc@rmapping, that is, a stroboscopic picture of the phase plane for the pendulum takel
once during each driving cycle after initial transients have died away, gives an obvious and convenient means
distinguish between regular periodic behavior and persisting chaos. A steady-state subharmonicofoutir
be seen in the Poindamap as a systematic jumping betwedixed mapping points. When the pendulum motion
is chaotic, the points of Poindasections wander randomly, never exactly repeating. Their behavior in the phase
plane gives an impression of the strange attractor for the motion in question.

Figure 11 shows an example of a purely oscillatory two-band chaotic attractor for which the set of @oincar
sections consists of two disjoint islands. This attractor is characterized by a fairly large domain of attraction in tf
phase plane. The two islands of the Poicarap are visited regularly (strictly in turn) by the representing point,
but within each island the point wanders irregularly from cycle to cycle. This means that for this kind of motior
the flow in the phase plane is chaotic, but the distance between any two initially close phase points within th
attractor remains limited in the progress of time: The greatest possible distance in the phase plane is determi
by the size of these islands of the Poirecarap.
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Figure 11. Chaotic attractor with a two-band set of Poircaections.
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Figure 12. Chaotic attractor with a strip-like set of Poinéagections.

Figure 12 shows the chaotic attractor that corresponds to a slightly reduced friction, while all other paramete
are unchanged. Gradual reduction of friction causes the islands of Fes®eions to grow and coalesce, and to
form finally a strip-shaped set occupying considerable region of the phase plane. As in the preceding examrg
each cycle of these oscillations (consisting of two driving periods) slightly but randomly varies from the precedin
one. However, in this case, the large and almost constant amplitude of oscillations occasionally (after a large |
unpredictable number of cycles) considerably reduces or, vice versa, increases (sometimes so that the pendt
makes a full revolution over the top). These decrements and increments result sometimes in switching the phi
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of oscillations: the pendulum motion, say, to the right side that occurred during even driving cycles is replace
by the motion in the opposite direction. During long intervals between these seldom events, the motion of tt
pendulum is purely oscillatory with only slightly (and randomly) varying amplitude. This kind of intermittent
irregular behavior differs from the well-known so-called tumbling chaotic attractor that exists over a relatively
broad range of the parameter space [22]. The tumbling attractor is characterized by random oscillations (whc
amplitude varies strongly from cycle to cycle), often alternated with full revolutions to one or the other side.
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Figure 13. An oscillatory six-band chaotic attractor.

Figure 13 illustrates one more kind of strange attractors. In this example the motion is always purely oscillz
tory, and nearly repeats itself after each six driving periods. The six bands of Rogezdions make two groups
of three isolated islands each. The representing point visits these groups in alternation. It also visits the islands
each group in a quite definite order, but within each island the points continue to bounce from one place to anott
without any apparent order. The six-band attractor has a rather extended (and very complicated in shape) dorn
of attraction. Nevertheless, at these values of the control parameters the system exhibits multiple asymptc
states: The chaotic attractor coexists with several periodic regimes.

Chaotic regimes exist also for purely rotational motions. Poieactions for such rotational chaotic attrac-
tors can make several isolated islands in the phase plane. A possible scenario of transition to such chaotic mc
from unidirectional regular rotation lies through an infinite sequence of period-doubling bifurcations occurring
when a control parameter (the driving amplitude or frequency or the braking frictional torque) is slowly variec
without interrupting the motion of the pendulum. However, there is no unique route to chaos for more complicate
chaotic regimes described above.

9 Concluding remarks
The parametrically excited pendulum is richer in various modes of possible behavior than we can expect f
such a simple physical system. Most of these modes can hardly be called “simple.” In this paper we have touct
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only a small part of existing motions. We have suggested a clear physical explanation of subharmonic resonan
and developed an approximate quantitative theory of these modes. The spectral composition of subharmonic |
onances is investigated quantitatively, and their low-amplitude boundaries in the parameter space are determir
Several related modes of regular behavior (subharmonic resonances of fractional orders) are described and
plained for the first time. We have shown also that “flutter” mode (destabilization of the dynamically stabilizec
inverted pendulum) has common physical roots with ordinary parametric resonance (instability of the downwal
position of the pendulum).

The simulations show that variations of the parameter set (dimensionless driving amalitudermalized
driving frequencyw/wy, and quality factoQ) result in numerous different regular and chaotic types of behav-
ior. The pendulum’s dynamics exhibits a great variety of other asymptotic rotational, oscillatory, and combine
(both rotational and oscillatory) multiple-periodic stationary states as well as chaotic attractors, whose basins
attraction are characterized by a surprisingly complex (fractal) structure. Computer simulations reveal also int
cate sequences of bifurcations, leading to numerous complicated chaotic regimes. Most of such motions that
observed in simulations remained beyond the scope of this paper. They are still waiting for plausible physical e
planations. With good reason we can suppose that this seemingly simple physical system is almost inexhaustil
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