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Abstract
Several well-known and newly discovered counterintuitive regular and chaotic
modes of the sinusoidally driven rigid planar pendulum are discussed
and illustrated by computer simulations. The software supporting the
investigation offers many interesting predefined examples that demonstrate
various peculiarities of this famous physical model. Plausible physical
explanations are suggested for some exotic and unexpected motions. This
paper can be useful for graduate and advanced undergraduate students and
their instructors. The suggested simulation program can also serve as an
exploration-oriented tool for discovering new features of the driven pendulum
and gives students an opportunity to perform mini-research projects on
their own.

1. Introduction: the investigated physical system

If we ask ourselves which is the most famous instrument in the history of physics, our
first idea may be about the pendulum. We may expect that an ordinary pendulum
subjected to periodic forcing will exhibit quite familiar behaviour which agrees well with
our intuition. However, despite the apparent simplicity, this well-known nonlinear system can
display a rich variety of rather complex, as-yet-unexplored modes of motion which include
various kinds of transient processes, single- and multiple-period stationary oscillations and
complete revolutions, subharmonic and superharmonic resonance responses, bistability and
multistability, intermittency, transient and stationary chaos. Most of these modes delight the
eye and certainly challenge our physical intuition. By slowly varying the control parameters
of the system (the frequency and amplitude of the drive, and damping factor), we can observe
various kinds of bifurcations manifesting transitions of the pendulum between dramatically
different modes of behaviour.

The seemingly simple situation of the forced pendulum occurred to be quite complex due
to the subtle interplay between natural modes of the pendulum (these modes are described in
detail in [1]) and the periodic driving force. The driven pendulum is interesting not only by
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its role in the history of physics, but also, maybe more importantly, because it is isomorphic
to many other physical systems including rf-driven Josephson junctions and phase-locked
voltage-controlled oscillators. The equation of motion of the dissipative, externally driven
pendulum serves as a paradigmatic model of various low-dimensional nonlinear dynamical
systems and plays an important role in explorations of bifurcational and chaotic phenomena.
Mechanical analogues of such systems allow us to observe a direct visualization of their motion
and thus can be very useful in gaining an intuitive understanding of complex phenomena.

Numerous nonlinear problems in relation to the forced pendulum are clearly presented
in [2]. The nonlinear phenomena that can be predicted by analytical methods are described
in [3]. Detailed reviews of the experimental and theoretical investigations of various regular
and chaotic features of the system are available in the literature (see, for example, [4, 5] and
references therein).

An obvious way to understand the behaviour of a nonlinear mechanical system is to
observe a computer simulation of its motion. Sometimes the simulations can tell us much
more than the equations and thus contribute greatly in building our physical intuition. For this
purpose, we have developed an educational interactive simulation program ‘rigid pendulum
driven by a sinusoidal torque’ included in the package ‘nonlinear oscillations’ [6] available
on the web. The software runs under the Windows operating system, and is accompanied
by detailed instructions on its usage. The program illustrates the motion of the sinusoidally
driven pendulum simulating all known modes of behaviour, and can also serve as a convenient
tool for discovering new features of this seemingly inexhaustible system. Several known and
new modes are described and explained in this paper, which can be useful for graduate and
advanced undergraduate students and their instructors.

2. The physical model

In this paper and in the simulation program [6] we consider an ordinary planar rigid pendulum,
say, a weightless rigid rod with a massive bob (point mass) at one end (a simple or mathematical
pendulum), or any other massive body (a physical pendulum) that can turn about a horizontal
axis in a uniform gravitational field. Being excited, the pendulum can rotate in the vertical
plane or swing about the stable equilibrium position in which its centre of mass is below
the axis. The period T0 of infinitely small natural oscillations in the absence of friction
is characteristic of the given pendulum and can serve as a convenient unit of time for the
simulation. Natural oscillations gradually dampen due to friction whose braking torque is
assumed in the model to be proportional to the angular velocity of the pendulum (viscous
friction).

The momentary mechanical state of the pendulum is determined by its angular position
ϕ, which is the angle of deflection from the vertical equilibrium position measured in radians
(or degrees), and by the angular velocity ϕ̇ = dϕ/dt measured in the simulation program in
units of the natural angular frequency ω0 of (undamped) infinitely small oscillations of the
pendulum (ω0 = 2π/T0). We assume that the pendulum is directly driven by an external
sinusoidal torque with the frequency ω and some constant amplitude.

The differential equation of motion used here and in the program [6] to simulate the
damped driven pendulum is of the form

ϕ̈ + 2γ ϕ̇ + ω2
0 sin ϕ = ω2

0φ0 sin ωt. (1)

Here, ω is the driving frequency and γ is the damping factor. To measure the viscous damping,
we can use instead of γ a more convenient dimensionless quantity Q—the quality factor that
equals the ratio ω0/2γ .
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Figure 1. Potential energy U(ϕ) ∼ (1 − cos ϕ − φϕ) of the pendulum subjected to a static torque
φ. Curve 1—φ = 0, curve 2—φ = 0.5, curve 3—φ = 1.

The driving torque in the right-hand part of equation (1) is proportional to φ(t) = φ0 sin ωt .
This means that the dimensionless quantity φ(t) can be used as a convenient measure of
the external torque. Its physical sense can be explained as follows. Imagine that some
small constant (time-independent) external torque φ is exerted on the pendulum (instead of
φ(t) = φ0 sin ωt). This torque φ causes a static displacement ϕ of the pendulum from the
vertical. The sine of this angular displacement is proportional to the torque. Indeed, for the
pendulum in equilibrium the time derivatives of ϕ vanish (ϕ̈ = 0 and ϕ̇ = 0), and we conclude
from equation (1) that under a static torque φ the relation sin ϕ = φ is valid. Hence φ = 1
corresponds to the external torque necessary to hold the pendulum stationary at a horizontal
position ϕ = π/2, the position of maximum restoring torque of gravity.

For small enough values of torques the displacement is small (ϕ � 1), and we can assume
sin ϕ ≈ ϕ. That is, ϕ ≈ φ. This means that the angular displacement of the pendulum under a
small static torque just equals this torque measured in the assumed angular units. In the limit
of a very low driving frequency (when ω → 0) the pendulum adiabatically follows the external
torque, and the low-frequency steady-state forced oscillation of the pendulum will occur just
with the amplitude of the driving torque measured in these units (provided the amplitude is
small enough so that the static displacement is proportional to the torque).

3. Behaviour of the pendulum under the slow varying sinusoidal torque
whose amplitude φ0 ≈ 1

Graphs of potential energy U(ϕ) ∼ (1 − cos ϕ − φϕ) for the pendulum subjected to a static
torque φ are shown in figure 1 for several values of φ. In the absence of external torque (φ = 0)

stable equilibrium positions—minima of U(ϕ)—are located at ϕ = ±2πn, n = 0, 1, . . . .

Natural oscillations of the down-hanging pendulum can occur in any of the equivalent potential
wells (say, about the midpoint ϕ = 0) with the frequency ω0. The static torque φ causes a
displacement of the equilibrium position to ϕ = arcsin φ. The pendulum can be in equilibrium
under a static torque if φ < 1 (curves 1 and 2 in figure 1); at greater values of φ potential
energy U(ϕ) has no minima (curve 3 in figure 1) so that equilibrium (as well as an oscillatory
motion) is impossible: the pendulum rotates. When φ → 1, the static displacement ϕ → π/2
(tends to the horizontal position of the pendulum).

The case of a slow varying sinusoidal torque whose amplitude φ0 ≈ 1 deserves special
investigation. Figure 2 shows the time-dependent graph of the steady-state motion at
ω = 0.01ω0 under the driving torque whose amplitude φ0 slightly exceeds one radian. Period
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Figure 2. Steady-state motion of the pendulum at φ0 ≈ 1 under sinusoidal torque N(t) of a low
driving frequency (ω = 0.01ω0). Harmonic components of ϕ(t) are also shown.
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Figure 3. Angular velocity at the low-frequency (ω = 0.01ω0) motion of the pendulum under the
sinusoidal torque N(t) whose amplitude φ0 ≈ 1.

T = 2π/ω of the driving torque is chosen in this graph as an appropriate time unit. We note a
linear dependence of ϕ(t) on time when the external torque N(t) increases sinusoidally from
zero to its maximal value φ0 = 1.

Next we try to explain this counterintuitive behaviour of the pendulum on the basis of the
differential equation (1). For a slow steady-state motion (at ω � ω0), we can ignore the terms
with the angular velocity and acceleration in the differential equation (1) of the pendulum. In
other words, the pendulum adiabatically follows the slow-varying external torque remaining
in the equilibrium position all the time (in the potential energy minimum), which is displaced
from the vertical by the external torque. The sine of this angular displacement ϕ(t) is equal to
the torque φ(t) = φ0 sin ωt . This is evident from equation (1). Therefore for φ0 = 1 we get
sin ϕ(t) = sin ωt , and hence for the time interval (0, T /4) the angle of deflection ϕ(t) = ωt :
when the external torque φ(t) increases sinusoidally, the equilibrium position ϕ(t) is displaced
linearly with time. The angular velocity of the pendulum in this slow uniform motion equals
the driving frequency: ϕ̇(t) = ω.

This means that we can assume a linear function ϕ(t) ≈ ωt for the zero-order solution to
equation (1) in the time interval (−T/4, T /4). Similarly, for the adjacent interval (T /4, 3T/4)

we can write ϕ(t) ≈ π/2 − ω(t − T/4) = π − ωt . As a whole, this approximate steady-state
periodic solution is characterized by a saw-teeth pattern with equilateral triangle teeth. The
simulation shows that this rectilinear tooth shape is slightly distorted near each apex by rapid
oscillations occurring after the external torque reaches a maximum and the direction of motion
of the equilibrium position is reversed. These rapid oscillations are especially pronounced in
the angular velocity plot (figure 3). The angular velocity ϕ̇ is expressed here in units ω0 of the
frequency of small undamped natural oscillations.
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Figure 4. Approximate behaviour of the angular velocity at the low-frequency steady-state motion
of the pendulum.

In order to investigate the character of these oscillations, we assume that the angle of
deflection for the time interval (T /4, 3T/4) can be expressed as ϕ(t) ≈ π − ωt + δ(t), where
the correction δ(t) to the zero-order function is small: δ(t) � 1. Differentiating equation (1)
with respect to time, we obtain the following equation for the angular velocity ϕ̇(t) = ν:

ν̈ + 2γ ν̇ + ω2
0 cos ϕ(t)ν = ωω2

0 cos ωt. (2)

In the left-hand part of this equation, we can replace ϕ(t) by its zero-order time dependence
ϕ(t) = π −ωt and substitute for cos ϕ(t) its approximate expression cos(π −ωt) = −cos ωt .
Thus instead of (2) we get an approximate second-order linear homogeneous equation for the
angular velocity ϕ̇(t) = ν:

ν̈ + 2γ ν̇ − ω2
0 cos ωt(ν + ω) = 0. (3)

We can conclude from equation (3) that after the oscillations of the angular velocity
ν damp out and ν approaches a constant value, so that its time derivatives in equation (3)
become negligible; this constant value equals −ω: ϕ̇ = ν → −ω. During the preceding
interval (−T/4, T /4) oscillations of the angular velocity ϕ̇(t) have also damped out, and its
constant value at the beginning of the interval (T /4, 3T/4) approximately equals ω. Now it
is convenient to transfer the time origin to the initial moment of the interval (T /4, 3T/4), that
is, to replace t → (t + T/4), or ωt → (ωt + π/2) in equation (3):

ν̈ + 2γ ν̇ + ω2
0 sin ωt(ν + ω) = 0. (4)

Oscillations of the angular velocity at the beginning of the interval (T /4, 3T/4) are
approximately described by a solution to this homogeneous equation. We note that in
equation (4), sin ωt can be replaced by ωt for the time interval we are interested in.
Even after this simplification, equation (4) cannot be solved analytically. However, we can
find numerically its particular solution for the given time interval with the help of any available
mathematical package. The initial conditions for the starting point of this interval follow
from the known pattern of the velocity graph for the periodic steady-state motion shown
in figure 3: ν = ω, ν̇ = 0. The graph in figure 4 shows the solution to equation (4)
with these initial conditions obtained with the help of the ‘Mathematica’ package (ω =
0.01ω0,Q = ω0/2γ = 0.1).

Comparing this graph with that shown in figure 3, we see that the approximate
equation (4) indeed describes qualitatively the general character of the angular velocity
oscillations occurring after the motion of the equilibrium position is reversed.

If amplitude φ0 of the driving torque and its frequency are chosen to be a little greater than
in the case considered above, the pendulum at first again follows the slowly varying torque
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Figure 5. Rotations and oscillations of the pendulum under a slow-varying sinusoidal external
torque.

so that the deflection angle ϕ(t) also slowly increases almost linearly with time up to the
highest (nearly horizontal) position. However, instead of reversing its slow motion alongside
the equilibrium position when the latter starts to move back, the pendulum in this case escapes
the shallow potential well over its low right barrier and ‘slides down’ along its bumpy outer
slope (see curves 2 and 3 in figure 1). This means that the pendulum commences a rapid,
unidirectional, nonuniform rotation. Figure 5 shows the graphs of the angular position ϕ(t)

and angular velocity ϕ̇(t) time dependence for this motion.
We can evaluate the average angular velocity 〈ϕ̇〉av of this rapid rotation by equating

the external torque φ0 at its maximum to the torque of viscous friction: ω2
0φ0 = 2γ 〈ϕ̇〉av,

whence 〈ϕ̇〉av ≈ Qω0. The average period Trot of this rotation can be estimated as
Trot = 2π/〈ϕ̇〉av ≈ T0/Q, where T0 = 2π/ω0 is the period of the small natural oscillations.

When t approaches T/2, the external torque N(t) becomes smaller, the pendulum rotation
gradually slows down and finally (when the torque almost vanishes) the pendulum becomes
trapped in the potential well, within which it executes damped natural oscillations near the
equilibrium position, which moves uniformly backward under the reversed external torque
(see figure 5). Then all of the above-described motions repeat in the opposite direction.

4. Steady-state response–frequency curves of the pendulum

4.1. Approximate theoretical resonance curve, hysteresis and bistability

The steady-state response of a linear oscillator subjected to sinusoidal forcing is also a
sinusoidal motion whose frequency equals the forcing frequency and whose amplitude depends
on the frequency in a resonance manner. For the pendulum, as long as the driving amplitude
is small and the damping is not too weak, the steady-state oscillation occurs with a small
amplitude, so that the amplitude–frequency resonance curve is rather well approximated by
the result for a harmonic oscillator.
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Figure 6. Approximate theoretical response–frequency curves of the pendulum: (a) constant
driving amplitude φ0 = 12.5◦, (b) constant quality factor Q = 10.

For a stronger driving and/or weaker friction, the resonance curve of the pendulum bends
towards lower frequencies and even folds, as is shown in figure 6. The nonlinear resonance
curve can be approximated considerably well by the following heuristic approach [7]: we
take the resonance curve of the harmonic oscillator and replace in it the natural frequency
ω0 by ωres(ϕm). This approach assumes that the steady-state oscillation is still harmonic,
i.e. sinusoidal, but its frequency depends on the amplitude ϕm. For ωres(ϕm), we can use
the approximate frequency–amplitude relation of the pendulum: ωres ≈ ω0

(
1 − ϕ2

m

/
16

)
(the

so-called skeleton curve shown by the thin dashed line in figure 6). The resonance peak at its
maximum is shifted to lower frequencies and acquires a shape typical for nonlinear systems
with a ‘soft’ restoring force. Over some critical value of the driving amplitude (for a given
quality factor), the theoretical resonance curve becomes S-shaped with three solutions, only
two of which are stable. This folding of the response–frequency curve leads to bistability and
hysteresis.

Within some interval of driving frequencies, the pendulum oscillates with either a large
amplitude or a small amplitude. In between there is always an unstable solution (see the
left overhanging slope of resonance peaks shown by dashed lines in figure 6). Which of the
two stable, periodic motions (limit cycles) is eventually established depends on the initial
conditions.

A convenient traditional way to observe the nonlinear resonance response of the pendulum
is to slowly vary (‘sweep’) the driving frequency from one side of the natural frequency through
the resonance peak to the other side in a process of continuous steady-state oscillations, while
the amplitude of the driving torque is kept constant. The pendulum responds differently
depending on the direction of the frequency variation—there is an associated hysteresis
characterized by abrupt jumps in the amplitude and phase of the steady-state response. When
in the process of frequency sweeping an abrupt jump occurs from one slope of the folded
resonance peak to the other, not only the amplitude of the steady-state oscillations changes
considerably, but also the whole mode undergoes a dramatic change.

Figure 7 shows the response–frequency curve obtained with the help of the simulation
program [6]. When we start the sweeping from low driving frequencies (and under the initial
conditions of zero, with the pendulum resting in the equilibrium position), the observed steady-
state response agrees perfectly well with the theoretical prediction: the forced oscillations
occur almost in phase with the drive, and their amplitude grows gradually while the frequency
is increased up to point A, which is characterized by a vertical tangent to the theoretical curve.
Then an abrupt jump to point B lying on the right slope of the resonance peak occurs. After
this jump, the amplitude and phase again agree well with the theoretical prediction. In the
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Figure 7. Hysteretic behaviour of the amplitude–frequency dependence during the up and down
sweeping of the drive frequency (φ0 = 12.5◦, Q = 10).
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Figure 8. Graphs of the angle and angular velocity for small-amplitude (30◦) and large-
amplitude (125◦) oscillations at the same parameters of the pendulum and of the external torque
(ω = 0.75ω0, φ0 = 12.5◦, and Q = 10). Initial conditions are indicated for the large-amplitude
oscillations. These graphs correspond to points 1 and 2 respectively on the response-frequency
diagram of figure 7.

process of further sweeping, the amplitude of the steady-state response gradually diminishes,
and the pendulum oscillates in an almost opposite phase with respect to the driving torque.

If we reverse the direction of the frequency sweep, the pendulum’s response on the way
back follows the same curve up to point B. However, the amplitude, instead of jumping down,
continues to increase along the right slope of the theoretical resonance peak after we have
passed through point B. Figure 8 gives an example of this bistability. Indeed, during the direct
sweeping from left to right the steady-state oscillations at point 1 are almost sinusoidal in
shape (curves ϕ1(t) and ϕ̇1(t) in figure 8) and occur nearly in the same phase with the driving
torque N(t), while on the way back, at point 2 (at the same frequency and amplitude of the
drive as at point 1), the oscillations have a much greater amplitude and lag in phase behind the
torque more than a quarter period. These oscillations are no longer harmonic: the graph of
ϕ̇2(t) has a saw-toothed appearance, while the graph of ϕ2(t), though resembling a sinusoid,
actually consists of nearly parabolic alternating segments.
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Figure 9. Graphs of ϕ(t) and ϕ̇(t) for the bell-ringer mode of forced oscillations. The graph of
ϕ̇nat(t) for natural undamped oscillations (φ0 = 0) of the same amplitude (about 168◦) is also
shown.

Steady-state modes ϕ1(t) and ϕ2(t), coexisting at the same frequency and amplitude of the
drive, differ in amplitude and in phase relationships with the driving torque—they correspond
to different slopes of the resonance peak. The large-amplitude mode ϕ2(t) has a much smaller
basin of attraction than ϕ1(t).

4.2. Nonlinear resonance and a ‘bell-ringer mode’

As one sweeps the drive frequency towards lower values, one moves to the left in figure 7
almost along the skeleton curve and can reach amplitudes that are considerably greater than the
estimated theoretical maximum (see figure 6). For weak damping, the steady-state amplitude
at low drive frequencies can be very large (approaching 180◦) at moderate and even quite
small drive amplitudes. Traces in figure 9 give an example of such extraordinary motion of
the pendulum, which was called by Peters [8] a ‘bell-ringer mode.’ In this mode the pendulum
passes rapidly through the lower equilibrium position, but ‘sticks’ near the extreme points of
oscillation, spending a very long time moving slowly in the vicinity of an unstable equilibrium
position (near the saddle point in the phase plane).

These large-amplitude oscillations give an example of nonlinear resonance: their period
(which equals the drive period) is very close to the period of natural oscillations of the
same amplitude. For large amplitudes, this period can last several periods of small natural
oscillations. Actually, such forced oscillations under conditions of nonlinear resonance are
very much like natural oscillations that occur at the corresponding large amplitude. To
emphasize this similarity, we show in figure 9, together with the graph of ϕ̇(t), also the graph
of ϕ̇nat(t) for natural undamped oscillations (φ0 = 0) of the same amplitude (about 168◦).

We can exploit the similarity between the bell-ringer mode and natural undamped
oscillations for theoretical calculation of the amplitude at a given resonant drive frequency. It
was shown in [1] that for non-sinusoidal natural oscillations with an amplitude ϕm approaching
180◦, the period depends on the amplitude as follows:

T = 2

π
T0 ln

8

π − ϕm
, whence ϕm = π − 8 exp

(
−π

2

ω

ω0

)
. (5)

In the simulation presented in figure 9, the frequency of the drive ω = 0.442ω0. Substituting
this value in equation (5), we find for the corresponding amplitude of undamped natural
oscillations: ϕm = 167◦. This theoretical estimate is very close to the amplitude of the
bell-ringer forced oscillations (ϕm ≈ 168◦) observed in the simulation experiment at the drive
frequency ω = 0.442ω0.
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Figure 10. Graphs of angular velocity ϕ̇(t) and its harmonics for the bell-ringer mode of forced
oscillations.

When the drive period is almost equal to the period of large natural oscillations, full
synchronization between the motions (phase locking) can occur. The pendulum lags in phase
about a quarter period behind the periodic external torque N(t). Due to the phase locking, this
small torque N(t) at resonance is almost always directed in phase with the angular velocity
ϕ̇(t) of the pendulum (see figure 10) and therefore supplies the pendulum with energy needed to
compensate for frictional losses and to maintain the constant amplitude of large non-sinusoidal
nearly natural oscillations.

An alternative physical explanation of the bell-ringer mode is based on considering
the motion of a particle in a time-dependent spatially periodic potential (see curve 1 in
figure 1) whose pattern is ‘rocking’ slightly about the origin (point 0), so that the right barrier
of the well lowers a bit and the left one rises when the external torque is directed to the right,
and vice versa, after a half-period of the drive. Let us imagine that the particle in the well
on its way from left to right slowly ‘climbs up’ the slope of the right barrier and turns back
approximately at the time when the potential pattern is horizontal (zero external torque), and
passes back through the bottom of the well just after the moment at which the right barrier is
at its maximal height. The duration of the particle motion back and forth in the non-parabolic
well depends on the amplitude, and if this duration equals the period of ‘rocking’ of the
potential pattern, phase locking can occur and a steady-state process can eventually establish.
The energy needed to overcome friction is supplied by the source that ‘rocks’ the potential
pattern (that is, by the periodic external torque).

This bell-ringer mode can certainly also be excited by carefully choosing proper starting
conditions. However, to maintain the large-amplitude motion, the phase relation between the
pendulum and the drive torque is critical. This means that for this mode the basin of attraction
on the phase plane of initial conditions is rather small. Hence, it is much easier to reach this
mode experimentally by sweeping down the drive frequency as described above. After each
step along the way, we must wait for the transients to settle.

The spectrum of the bell-ringer large-amplitude oscillations, besides the fundamental
harmonic whose period equals the driving period, also contains several harmonic components
of higher orders. Their frequencies are odd integer multiples of the fundamental frequency.
Figure 10 shows the graphs of angular velocity ϕ̇(t) and its harmonics for the bell-ringer mode.

4.3. Symmetry-breaking and period-doubling bifurcations, chaos and crisis

A further decrease of the drive frequency brings the system to point C (see figure 7) at which
a symmetry-breaking bifurcation occurs: the pendulum’s excursion to one side is greater
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than to the other side, for example 173◦ versus 165◦. This spatial asymmetry of oscillations
increases as we move further to lower frequencies. In the spectrum of such asymmetric
steady-state oscillations, besides harmonics of odd orders, even-order harmonics of small
amplitudes are present, including a zero-order component (constant mid-point displacement).
Such asymmetric modes exist in pairs whose phase orbits (at the same drive frequency) are
the mirror images of one another.

In this way, at a certain frequency, a period-doubling bifurcation occurs: in each
subsequent cycle the maximal deflection to the same side slightly differs from the preceding
one, but after two cycles the motion repeats exactly. This means that the period of this
steady-state oscillation equals two drive periods. Period doubling breaks the original time-
translational symmetry of the sinusoidally driven pendulum: although the driving torque
repeats exactly from cycle to cycle, the pendulum executes slightly different motions on
alternate cycles. For this motion, the Poincaré section consists of two nearby points in the
phase plane visited in alternation.

What happens after this period-doubling bifurcation in the simulation experiment depends
strongly on details of the frequency diminution. If the sweeping occurs in very small steps, a
whole cascade of close-set period-doubling bifurcations can be observed. Each bifurcation in
this series doubles the period of motion and the number of fixed points in its Poincaré map.

This cascade of period-doubling bifurcations converges to a chaotic large-amplitude
oscillation of the pendulum. During these chaotic oscillations of the bell-ringer type, the
maximal deflection is close to 180◦ and varies randomly from cycle to cycle whose duration
equals approximately one driving period. In contrast to a complicated initial transient that
eventually leads to a regular motion characterized by a fixed finite set of Poincaré sections, this
chaotic regime persists indefinitely. The Poincaré map consists of two small nearby islands
visited in alternation. Within each island, the point bounces randomly from cycle to cycle.
This chaotic state is stable in the sense that after a small perturbation, the phase trajectory
converges to the same region. Attracting regions in the phase space that correspond to chaotic
regimes are called strange attractors because they are formed by fractals—geometric objects
of non-integer dimensions. The fractal character of attractors is essential to the existence of
persistent dynamical chaos.

The chaotic oscillatory regime following the bell-ringer mode exists in a very narrow
interval of the driving frequencies, so that a slight perturbation can cause a crisis leading to an
abrupt jump of the amplitude down to point D (see figure 7) located on the far left outskirt of
the resonance peak. If the frequency sweeping is executed by steps that are not small enough,
this jump can occur before the chaotic regime is established or even before the period-doubling
bifurcation occurs.

Actually, this abrupt jump of the amplitude is presented by a long irregular transient during
which the motion of the pendulum undergoes a radical rearrangement. Details of this transient
are very sensitive to the character of perturbation (to the magnitude and timing of the frequency
step). In particular, the initial stage of the transient may have the character of intermittency:
during a long time the pendulum executes an asymmetric oscillation in which its excursion,
say, to the left side is greater than to the right side. Then during several cycles the asymmetry
changes to the opposite, that is, to prolonged oscillations with a greater maximal deflection
to the right side. Such irregular interchanges of the two spatially asymmetric regimes are
characterized by a time scale much longer than the cycle duration (the drive period), and can
occur several times before the crisis.

The crisis leading to the jump down of the amplitude can be initiated, for example if
irregular amplitude variations lead the pendulum to cross the vertical (to make a full revolution),
after which the pendulum gradually settles down to the low-frequency and low-amplitude
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Figure 11. Transition from large-amplitude nonlinear oscillations (from the irregular bell-ringer
mode) to small-amplitude ordinary forced oscillations.

regular (sinusoidal) steady-state oscillation for which the angular displacement ϕ(t) almost
exactly equals the driving torque: ϕ(t) ≈ φ0 sin ωt . The simulation of motion in figure 11
shows us what can happen during a transient that accompanies this amplitude jump.

If after this jump down of the amplitude at point D (see figure 7) we continue to sweep
down the frequency, the amplitude and phase of steady-state oscillations again obey the
theoretical response–frequency curve, just as they did while sweeping the frequency from left
to right.

5. Subharmonic and superharmonic resonances

Steady-state forced oscillations of a large amplitude, resembling the bell-ringer mode, can also
occur if the driving frequency is approximately three times greater than the natural frequency
that corresponds to this large amplitude. Figure 12 clearly shows that the third harmonic of
these steady-state oscillations has the frequency that equals the driving frequency, while the
frequency of the fundamental harmonic equals one-third of the driving frequency. In other
words, one cycle of such non-harmonic oscillations of the pendulum covers three driving
periods. Forced period-3 oscillations of large amplitude occurring under such conditions give
an example of nonlinear third-order subharmonic resonance. Subharmonic resonances do not
exist in linear systems.

Similar to the bell-ringer mode (see figure 10), the pendulum behaves here very much
like during free oscillations. The sinusoidal external torque, being synchronized with the
third harmonic of these non-harmonic large-amplitude natural oscillations, compensates for
frictional losses and maintains a constant angular excursion. This synchronization (phase
locking) can occur only if at t = 0 (the time moment when the torque is switched on)
large-amplitude natural oscillations already exist. This means that for a given frequency of
the external torque (lying within a definite interval), the third-order subharmonic resonance
occurs only for initial conditions from a certain region (from the basin of attraction of this
limit cycle). Different initial conditions cause the pendulum to eventually settle down into the
low-amplitude period-1 anti-phase oscillation that corresponds to the far-off high-frequency
slope of the nonlinear resonance peak.

During slow reduction of the driving frequency under conditions of the third-order
subharmonic resonance, a symmetry-breaking bifurcation occurs, after which the angular
excursion to one side is greater than to the opposite side. Such spatially asymmetric modes
exist in pairs whose phase orbits are the mirror images of one another. Further reduction
of the driving frequency leads to a crisis: after a long transient the pendulum settles into



Extraordinary oscillations of an ordinary forced pendulum 227

135

−135
 0  1  2  3  4  5  6 

(quality 280.0,  driving freq. 1.85, driving ampl. 35.0, initial defl. − 3.99 degr., init. ang. velocity −2.27)

2.27

0

−2.27
 0  1  2  3  4  5  6 

°

°

ϕ (  )t

N (  )t

ϕ (  )t
N (  )t

.

0

Figure 12. Subharmonic resonance of the third order.
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Figure 13. Graphs of angular velocity ϕ̇(t) and its harmonics at subharmonic resonance of the
fifth order.

the ordinary anti-phase mode of forced oscillations that correspond to the right slope of the
nonlinear resonance curve.

At subharmonic resonance of the fifth order (see the graph of ϕ̇(t) and its harmonics in
figure 13), one cycle of the pendulum’s almost natural oscillation covers five driving periods:
the external torque is synchronized with the fifth harmonic of a period-5 large-amplitude
oscillation of the pendulum. On average, this phase locking provides a surplus of energy
transferred to the pendulum over the energy returned back to the source of the external torque,
thus compensating for frictional losses.

Gradually reducing the driving frequency under conditions of the fifth-order subharmonic
resonance, we can observe the symmetry-breaking and period-tripling bifurcations, after which
the period of steady-state forced oscillations equals 15 driving periods. The set of Poincaré
sections consists of 15 fixed points in five groups visited by turn. Each group consists of three
nearby points.

The subharmonic resonances discussed above occur at rather high drive frequencies, which
are equal to an odd integer of the natural frequency. In contrast, superharmonic resonances
can be excited at rather low drive frequencies: synchronization of the drive with oscillations of
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Figure 14. Plots of angular deflection ϕ(t) and its harmonics at superharmonic resonance of the
third order occurring under the sinusoidal external torque N(t).

the pendulum (phase locking) occurs if one period of the drive covers an odd integer number
of natural periods.

The nature and origin of superharmonic resonances can be explained in the following way.
Let us consider natural nonlinear oscillations of the pendulum in a potential well that slowly
moves back and forth due to sinusoidally varying (with driving frequency ω) external torque.
Under certain conditions, an integer number of natural cycles covers one period of the potential
well motion. Figure 14 clearly shows that for the third-order superharmonic resonance, just
three natural cycles are executed during one period of the drive. In this case, phase locking of
the potential well motion with natural oscillations can occur. By virtue of this synchronization,
the external torque can continuously supply the pendulum with energy required to compensate
for frictional losses and prevent damping of short-period natural oscillations of the pendulum
in the moving potential well. As a result, a steady-state non-sinusoidal period-1 oscillation
(its period equals that of the drive) is established, whose spectrum is distinguished by the
considerable contribution of the third harmonic.

Depiction of such a motion on the computer screen with the help of the simulation program
[6] allows us to develop an intuitive feel for how nonlinear systems generate high harmonics
of the sinusoidal input oscillation. The simulation tells us much more for understanding this
phenomenon than the mathematical equations.

Superharmonic resonances are also accompanied by symmetry-breaking bifurcations and
chaotic regimes. Examples of strange attractors that follow superharmonic resonances of the
third and fifth orders are shown in figures 15(a) and (b), respectively.

6. Other extraordinary regular forced oscillations

The original time-translational symmetry in the motion of the sinusoidally driven pendulum
can be broken not only by the above-described period-doubling bifurcations: under certain
conditions regular oscillations of the pendulum have a period which covers some integer (other
than two) number of the drive period.

Figure 16 shows the graphs of ϕ(t) and ϕ̇(t) with harmonics for a period-3 nonlinear
oscillation in which the frequency of the third harmonic coincides with the driving frequency.
The pendulum makes one oscillation during each drive period, but the swing differs from one
cycle to the next as though the mid-point were moving with a period that is three times the drive
period: maximal angular excursion of the pendulum equals 171◦, then 117◦ and then 111◦.
After three cycles of the external torque, all the motion repeats. The set of Poincaré sections
consists of three fixed points visited in turn. If the initial conditions are chosen somewhere
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beyond the basin of attraction of this mode, the pendulum eventually settles into a coexisting
simple mode—period-1 spatially symmetric oscillations with an amplitude of 142◦ that occur
in the opposite phase with respect to the driving torque.

When the driving frequency is slightly smaller than the natural frequency, rather
counterintuitive steady-state modes can occur in which the motion of the pendulum resembles
beats: the amplitude and frequency of oscillation are not constant but instead vary slowly
with a long period that equals an integer (odd and rather large) number of driving periods.
An example of such modulated steady-state oscillations whose period equals eleven driving
cycles is shown in figure 17. We note the most surprising feature of this mode: the maximal
deflections of the pendulum have no tendency to equalize in the course of time. In contrast to
ordinary transient beats, in these oscillations the variations of amplitude and frequency do not
fade: once established, they continue forever.
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Figure 18. Harmonic components (the spectrum) of period-11 forced oscillations.

We can suggest a simple physical explanation for this exotic mode. Let the phase of the
sinusoidal driving torque be initially almost equal to the phase of (natural) oscillations of the
angular velocity. That is, let us assume that the external torque varies with time in such a way
that it is directed along the angular velocity during almost the entire period. In this case, the
energy is transferred to the pendulum and the amplitude of oscillations gradually grows. But
with the growing amplitude, the natural period of the pendulum becomes longer. Therefore
after a while the oscillations of the angular velocity accumulate some phase lag with respect
to the driving torque. When this phase lag increases up to 180◦, that is, the driving torque
varies in the opposite phase with respect to the angular velocity, the energy flow is reversed.
This causes the swing of oscillations to decrease.

Then after a while the phase relations again become favourable for supplying the energy
to the pendulum, and the amplitude grows again. Thus, the amplitude of oscillations is
modulated with some (rather long) period. A small amount of friction can stabilize the period
of modulation. If this period equals an integer number of the driving periods, the phase locking
can occur. By virtue of this synchronization between the drive and natural oscillations, the
whole process of modulated oscillations becomes exactly periodic. The energy dissipation
is compensated by a somewhat greater amount of energy being transferred to the pendulum
on average (during a cycle of the modulation) compared to the backward transfer from the
pendulum to the source of the external drive.

Thin lines in figure 18 show harmonic components (the spectrum) of these period-11
oscillations. The fundamental harmonic of this non-sinusoidal oscillation has 1/11th of the
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Table 1. Amplitudes of odd harmonics for period-11 oscillations.

No Amplitude (radians) Amplitude (degrees) Velocity (units of ω0)

1 0.091 5.214 0.007
3 0.137 7.850 0.039
5 0.269 15.41 0.121
7 0.585 33.52 0.374
9 1.164 66.69 0.951

11 0.883 50.59 0.885
13 0.428 24.52 0.507
15 0.013 0.745 0.018

driving frequency ω. Its amplitude is an order of magnitude smaller than the amplitude
of the 11th harmonic component whose frequency equals the driving frequency. Besides
this component, harmonics with frequencies 7/11, 9/11 and 13/11 of the driving frequency
contribute considerably to the resulting oscillation. The amplitudes of odd harmonics are
listed in table 1.

Another example of a periodic steady-state forced motion of a pendulum is presented in
figure 19. During one period of the external torque, the pendulum makes six fast revolutions
to one side; then its rotation slows down and it makes six revolutions to the opposite side.

From the angular velocity graph, we suppose that the time dependence of ϕ̇(t) can be
represented as a superposition of a slow periodic component (varying almost sinusoidally with
the drive period T) and a small fast component distorting this slow variation. We suppose that
the slow variation of ϕ̇(t) is caused by the slow varying external torque, while the additional
fast oscillations of ϕ̇(t) appear by virtue of the gravitational force that influences the pendulum
rotation. Hence to a first approximation, this extraordinary behaviour of the pendulum can
be explained by neglecting the force of gravity. Omitting the last term in the left-hand
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part of equation (1), we get the following linear first-order equation for the angular velocity
ν(t) = ϕ̇(t):

ν̇ + 2γ ν = ω2
0φ0 sin ωt. (6)

The steady-state periodic solution of this equation can be represented as follows:

ν(t) = −νm cos(ωt + δ), νm = ω2
0φ0√

ω2 + 4γ 2
, δ = arctan

2γ

ω
. (7)

Hence, the angular velocity ν(t) varies sinusoidally with the drive frequency ω and the
amplitude νm given by equation (7). Actually, ν(t) corresponds to the slow component of ϕ̇(t)

averaged over the period of fast rotation: ν(t) = 〈ϕ̇(t)〉av. According to equation (7),
its amplitude νm ≈ ω2

0φ0
/
ω equals 3.6ω0 for the values φ0 = 0.8 and ω = 0.22ω0

that were used in the simulation experiment shown in figure 19, while the phase lag
δ = arctan(2γ /ω) = arctan(ω0/Qω) ≈ 0.3. These values agree rather well with the
experiment. To evaluate the minimal period �t of fast rotation, we can divide the full
angle 2π by the average angular velocity νm, whence �t/T = ω/νm = 0.06, which also
agrees well with the experimental graph in figure 19.

We can evaluate the amplitude of fast oscillations of the angular velocity ϕ̇(t) on the basis
of the energy conservation. Let ϕ̇max and ϕ̇min be the maximum and minimum values of ϕ̇(t)

during the stage of fastest rotation. The kinetic energy of the rotating pendulum at the lowest
point (which is proportional to ϕ̇2

max) is greater than at the inverted position approximately by
the difference in the potential energy at these points. From these considerations, we find

ϕ̇max,min = νm

(
1 ± ω2

0

ν2
m

)
, νm = ω2

0φ0√
ω2 + 4γ 2

≈ ω2
0φ0

ω
. (8)

According to this estimate, the fractional difference (ϕ̇max − ϕ̇min)/νm at φ0 = 0.8 and
ω = 0.22ω0 equals 0.15, again in a good agreement with the experiment.

An alternative physical explanation of this mode may be formulated by considering the
motion of a particle in a time-dependent periodic potential (see curve 1 in figure 1) whose
lateral barriers are slowly rising and falling with time. In contrast to the similar approach in
the explanation of the bell-ringer mode (see section 4.2), now the potential pattern is ‘rocking’
about the origin (point 0) with a large amplitude. After escaping the potential well by crossing
its falling barrier, the particle starts to slide down along the bumpy slope crossing the barriers
until the next barrier rises high enough to slow down the particle and to force its backward
non-uniform motion.

To maintain this exotic steady-state periodic motion (to provide the phase locking), the
phase relation between the pendulum and the periodic variation of the potential pattern (that
is, the drive torque N(t) time dependence) is critical. This means that the mode can be
excited only by choosing the initial conditions carefully. In other words, this limit cycle is
characterized by a small basin of attraction.

7. Concluding remarks

The dynamic behaviour of the planar forced pendulum discussed in this paper is richer
in various modes than we might expect for such a simple physical system relying on our
intuition. Its nonlinear large-amplitude motions can hardly be called simple. Variations of
the parameters result in different regular and chaotic types of dynamical behaviour. The
program ‘rigid pendulum driven by a sinusoidal torque’ [6] offers many interesting predefined
examples (besides those discussed above) that illustrate various peculiarities of this famous
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physical model in vivid computer simulations. Visualization of the motion simultaneously
with plotting the graphs of different variables and phase trajectories makes the simulation
experiments very convincing and comprehensible.

In this paper, we have touched on only a small portion of the steady-state modes and
regular motions of the sinusoidally driven rigid pendulum. The pendulum’s dynamics exhibit
a great variety of other counterintuitive rotational, oscillatory and combined (both rotational
and oscillatory) multiple-periodic stationary states (attractors), whose basins of attraction are
sometimes characterized by a surprisingly complex (fractal) structure. Computer simulations
also reveal intricate sequences of bifurcations, leading to numerous intriguing chaotic regimes.
Most of these features remain beyond the scope of this paper. With good reason we can say
that this familiar and apparently simple physical system seems almost inexhaustible.
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