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Abstract. An interesting,useful,andsimple,butnotwidelyknownpropertyof Keplerianmotion
relatingto thecircularshapeof theorbit in velocityspaceis discussedin thispaper. Thepropertyis
illustratedby acomputersimulationprogram.A simpledynamicalderivationof thecircularshape
of thevelocityhodographis suggested.

1. Circular hodograph of the velocity vector for closed and open orbits

One of the most interestingaspectsof Keplerianmotion (the motion along conic sections
governedsolelyby acentralforcewhosemagnitudeis inverselyproportionalto thesquareof
the distancefrom the force centre)concernsthe shapeof its trajectoryin velocity space(or
momentumspace).

The velocity vector of a moving body at any momentis directedtangentiallyto the
spatialtrajectory, so that in curvilinearmotion the directionof the velocity vectorchanges
continuously. We obtainthetrajectoryof motionin velocity space asfollows. For eachpoint
on thespatialtrajectory, we draw thecorrespondingvelocity vectorso that its tail lies at the
origin of velocityspaceandits directionis parallelto thetangentto thespatialtrajectoryat the
point in question.During thecurvilinearnon-uniformmotionof thebody, thedirectionand
magnitudeof this vectorchange.Thetip of this varyingvelocity vectorgeneratesa curve in
velocityspace.Thenow-customarynameof ‘hodograph’wasgivento thiscurveby Hamilton
in 1846.

For a circularorbit, themagnitudeof thevelocity is constantandsothevariationof the
velocityvectoris reducedto auniformrotationabouttheorigin of velocityspace.It is evident
that the hodographof the velocity vector for the circular Keplerianmotion is itself a circle
whosecentreis locatedat the origin of velocity space.The radiusof this circle equalsthe
constantmagnitudeof thecircularvelocity.

As aplanetor asatellitemovesalongaclosedelliptical orbit or alonganopenparabolicor
hyperbolictrajectory, rotationof thevelocityvectoris non-uniform,andboththedirectionand
magnitudeof thevectorchange.However, thesevariationsoccurin suchawaythattheendof
thevelocity vectorin this casealsogeneratesa circle (or anarcof a circle) in velocity space
but whosecentreis not at theorigin. In otherwords,thehodographof thevelocity vectorfor
anarbitraryKeplerianmotionis acircle. This interestingpropertyis ignoredin almostall the
numeroustextbooksonmechanicsandgeneralphysicsthattreattheorbitalmotion. Forclosed
orbits,thepropertyis briefly discussedin anoptionalsupplementin [1], andis usedin [2] for a
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Figure 1. Keplerianorbit of a satelliteandthevelocity vectorsin space(left), andhodographof
the velocity vectorin velocity space(right). Identicalnumberson the left- andright-handsides
referto thesameinstantsof time.

geometricalderivationof Kepler’s first law. In addition,anappropriatetaskis assignedin [3]
for numericalsolution.

Theaimof thispaperis to draw attentionto this interestingproblemandsuggestasimple
analyticproofbasedonNewton’s lawsof motion. But first we illustratethispropertywith the
helpof thesimulationprogramincludedin theeducationalsoftwarepackage[4], developed
recentlyby theauthor. Theleft-handsideof figure1showsthespatialtrajectoryof asatelliteor
aplanetthatmovesundertheinverse-squarecentralforce. In equaltimeintervals,thevelocity
vectorsarefixed astangentsto the spatialtrajectory. On the right-handsidethe samefixed
vectorsareshown in velocityspace.Wecanseeclearlythatduringthemotionof thesatellite
alongtheelliptical orbit, theendof thevaryingvelocity vectorgeneratesa circle in velocity
space.

The lower semicircle of the hodograph(starting at point 1 and moving clockwise)
correspondsto the right-handhalf of the elliptical orbit, during which the satellitemoves
clockwisefrom perigeetowardsthe apogeewith a decreasingspeed. The other (upperin
figure1) semicircleof thehodographcorrespondsto thesecondpartof theorbit, duringwhich
thesatellitemovesclockwisefrom apogeeto perigeeandits speedincreases.

For an elliptical orbit, the diameterof this circular hodographequalsthe sum of the
magnitudesof thevelocitiesvP andvA at perigeeandapogee,respectively. At thesepoints
of an elliptical orbit the velocity vectorsareoppositelydirected. The centreof this circular
hodographcorrespondingto theelliptic motionis displacedfrom theorigin of velocity space
in thedirectionof thevelocityvectoratperigee,vP, throughthedistance(vP − vA)/2 equalto
half thedifferenceof thevelocitymagnitudesatperigeeandapogeeof theorbit (seefigure1).

At the endof a minor axis of the elliptical orbit, the velocity vectorv is parallelto the
major axis. Hencev is orientedperpendicularlyto the diameterof the circular hodograph.
Joiningthe tip of v to the tips of vP andvA in velocity space,we obtainedthe right-angled
triangleinscribedin thehodograph.In this trianglev is theheightdroppedto thehypotenuse.
Therefore,the speedv at the endof the minor axis equalsthe geometricmeanvalueof the
speedsatperigeeandapogeeof theorbit: v = √

vPvA .
In figure1 thepositionsof thesatellitein theorbit andthecorrespondingvelocityvectors

arefixedat equaltime intervals,andwe caneasilyjudgevariationsin theangularvelocity of
rotationof thevelocityvectorasit tracesthecircle. Comparingtheanglesbetweensequential
positionsof the velocity vector, we seethat nearposition1, as the satellitepassesthrough
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Figure 2. Parabolic trajectory of a body in a central gravitational field and the velocity vectors in
space (left), and hodograph of the velocity vector in velocity space (right). Identical numbers on
the left- and right-hand sides refer to the same instants of time.

perigee, the velocity vector rotates rapidly. Its rotation slows down as the satellite passes
through apogee of the orbit.

An open parabolic trajectory for Keplerian motion (the total energy for which is zero) can
be considered the limiting case of motion along a strongly elongated elliptical orbit whose
apogee recedes to infinity (figure 2). In this case, the velocity of the satellite at apogee
approaches zero. The hodograph is a closed circle whose diameter equals the velocity of the
body at the vertex of the parabola (the point on the trajectory nearest to the centre of force).
The circular hodograph corresponding to the parabolic Keplerian motion passes through the
origin of velocity space. The origin is reached when the body recedes to infinity. This motion
is of infinite duration.

For an infinite hyperbolic motion in an inverse-square central gravitational field, the
hodograph of the velocity vector is also circular (figure 3). In this case, the radius of the
velocity hodograph is smaller than the maximal velocityvP of the body at the point nearest to
the centre of force. The origin of velocity space is outside the circle.

In hyperbolic motion, the body approaches the centre of force from infinity, where its

Figure 3. Hyperbolic trajectory of a body in a central gravitational field and the velocity vectors
in space (left), and hodograph of the velocity vector in velocity space (right). Identical numbers
on the left- and right-hand sides refer to the same instants of time.
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velocity is non-zeroand is directedalong one of the asymptotesof the hyperbola. In the
hodograph,the velocity at infinity is tangentialto the circle. In the courseof motion the
velocity vectorgeneratesa partof thecircle away from theorigin. Startingfrom thepoint of
tangency, themagnitudeof thevectorgraduallyincreasesandreachesits maximalvaluewhen
the vectorextendsfrom the origin of velocity spaceto the furthestpoint of the circle. This
vectoris thevelocity of thebodywhenthebodypassesthroughthevertex of thehyperbolic
trajectory(thepointnearestto theforcecentre).

The velocity vector then graduallyshortens,its end moving further along the circle.
Eventuallytheendof thevelocityvectorreachestheotherpointof tangency wherethevelocity
assumesits initial magnitudeandthe body is infinitely remote. This secondtangentto the
hodographis directedparallelto theotherasymptoteof thehyperbolictrajectory, alongwhich
thebodyrecedes.

2. A simple dynamical derivation of the circular shape of the velocity

hodograph

AccordingtoGoldstein[5], thecircularshapeof thehodographfor theellipticalorbitswasfirst
communicatedin 1846by Hamilton,whoseinvestigationwasbasedontheuseof theinvariant
Laplaceor Runge–Lenzvector. Thisvectorcanbereferredto asadynamicalinvariantsinceit
dependsontheparticularforcelaw (specifically, theinverse-squarelaw), whilesuchinvariants
astheangularmomentumandenergy canbecalledgeometrical,sincethey dependongeneral
symmetrypropertiesof spaceandtime. HamiltonprovesthattheLaplacevectoris constantas
a preliminaryto demonstratingthat thehodographis circular. Certainly, the invariantnature
of theLaplacevectorandthecircularshapeof thevelocityhodographarecloselyrelated.

Nevertheless,it is possibleto give a simple,but rigorousproof of thecircularhodograph
theoremwithout referringto the Laplacevector. The theoremcanbe proved geometrically,
in themannerfavouredby Newton. Theproof is baseddirectly on Newton’s laws of motion
appliedto aparticlethatmovesunderthecentralgravitationalforceF(r) = GmM/r2.

Accordingto Newton’s law of motion,theeffect of forceis to modify themomentumof
the body, that is, its velocity, ratherthanits position. The vectordv/dt of the acceleration
producedbytheforceof gravity isalwaysdirectedtowardsthecentreof force,anditsmagnitude
is inverselyproportionalto thesquareof distancer:

dv

dt
= −GM

1

r2

r

r
. (1)

Next we eliminatethevariable1/r2 from this equationusingthelaw of conservationof
angularmomentum:

L = m|r × v| = mrv⊥ = mr2ϕ̇. (2)

Herev⊥ = rϕ̇ is the transversecomponentof the velocity of the particle (the component
orthogonalto the radiusvector),and ϕ̇ = dϕ/dt is the angularvelocity. Sincethe angular
momentumof theparticleremainsconstantduringthemotionin a centralforcefield, for any
point of thetrajectorythesquareof thedistancer from theorigin canbeexpressedwith the
helpof equation(2) in termsof theangularvelocity ϕ̇ andaconstantvalueof L:

1

r2
=

m

L
ϕ̇ =

m

L

dϕ

dt
. (3)

Substituting1/r2 givenby equation(3) into equation(1), we find that the incrementin
thevelocity vectorduringthetime interval 1t is givenby theinfinitesimalvector1v whose
directionis antiparallelto r andwhosemagnitudeis proportionalto the angle1ϕ, through
which theradiusvectorof theparticlerotatesduring1t :

|1v| =
GMm

L
1ϕ. (4)
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We notethat this proportionalitybetween|1v| and1ϕ holdsonly for the motion in a
centralfield whosestrengthis proportionalto 1/r2. Hencethecircular form of thevelocity
hodograph(thepropertythatwe aregoingto prove) is aninherentpropertyof inverse-square
centralfields.

Figure 4. Keplerianorbit of asatelliteandthevelocityvectorin space(left), andhodographof the
velocity vectorin velocity space(right).

A geometricinterpretationof equation(4) is shown in figure 4. Eachtime the spatial
radiusvectorr of theorbiting particleturnsthroughan infinitesimalangle1ϕ, thevelocity
vectorv is incrementedby 1v, whosemagnitude|1v| is proportionalto 1ϕ. This implies
thattheelementaryvectors1v in velocity spacelie alonga circle, that is, thepolygonalline
formedby sequential1v vectorsis circumscribedby a circle (figure4). Theradiusu of this
circle,accordingto equation(4), equalsGMm/L. At eachmomenttheradiusvectoru of the
hodographis perpendicularto 1v and,hence,to thespatialradiusvectorr. In otherwords,
the(non-uniform)rotationof thepositionvectorr in space(left-handsideof figure4) andthe
correspondingrotationof vectoru in velocityspace(right-handsideof figure4) alwaysoccur
90◦ outof phase.

Thus,equation(4)provesthatthehodographof thevelocityvectorisacircle. Theconstant
valueu = GMm/L of thecoefficientof proportionalitybetween|1v| and1ϕ in equation(4)
givestheradiusof this circularhodographof thevelocity vector.

It is convenientto expressradiusu of thevelocity hodographin termsof velocity vP at
perigeeandthecircularvelocity vc for theperigeedistancerP. Sincevc =

√
GMm/rP and

L = mrPvP, weobtaintheexpression:

u =
v2

c

vP
. (5)

If thesatelliteis launchedinto a circularorbit (vP = vc), equation(5) yieldsu = vc. In
thistrivial casetheradiusof thehodographclearlyequalsthecircularvelocity. Foranelliptical
orbit, it is possibleto expresstheradiusu = GMm/L of thehodographin termsof velocities
vP andvA at the perigeeandapogee,respectively. We canusethe laws of the conservation
of energy andangularmomentumfor this purpose.Equatingthevaluesof thetotal energy at
thesepointsrP andrA , wewrite:

m

2
v2

P − G
Mm

rP
=

m

2
v2

A − G
Mm

rA
. (6)

We next solve this equationfor GMm, and substituteinto u = GMm/L the expression
obtained,togetherwith the(constant)angularmomentumL, calculated,say, for theperigee:
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L = mrPvP. The ratio of distancesrP/rA canbe eliminatedwith the help of the relation
rPvP = rAvA . (The valuesof the angularmomentumareequalat the perigeeandapogee).
Finally, weobtainthefollowing expressionfor theradiusu of thevelocityhodograph:

u =
1

2
(vP + vA). (7)

By virtue of this property, we can representthe velocity vectorv for any point of an
elliptical orbit asthevectorsumof thefollowing two vectorsw andu (seefigure4). Oneterm
of thesumis theconstantvectorw = (vP + vA)/2 of magnitude(vP − vA)/2, directedalong
thevectorvP of thevelocityatperigee.Thisvectorw extendsfromtheoriginof velocityspace
to thecentreof thecircularhodograph.Thesecondtermis a vectoru of constantmagnitude
u = (vP + vA)/2, whosedirectionis alwaysperpendicularto thespatialradiusvectorr of the
orbitingbody.

Thisrepresentationof thevelocityvectorasthesumof two vectors(v = w + u) is useful
for solvingcertainproblemsconcerningKeplerianmotion.

The derivation of equation(4) that gives the proof of the circular form of the velocity
hodograph,aswell asthegeometricinterpretationof equation(4) discussedabove,arebased
on theinverse-squaredependenceof thecentralforceon distance.Theassumptionaboutthe
closedtrajectoryis usedonly in thecalculationof thehodographradiusu in termsof vP and
vA . Consequently, the circular form of the velocity hodographis characteristicnot only of
closed(circularandelliptical)orbits,butalsoof open(parabolicandhyperbolic)trajectoriesof
motionin acentralfieldwhoseforceis inverselyproportionalto thesquareof thedistancefrom
thecentre.For theparabolictrajectorythetwo termsof thesumu+w haveequalmagnitudes:
u = w = vP/2. For ahyperbolicmotion,thediameter2u of thecircularhodographis smaller
thanthevelocity vP at thevertex of thehyperbola(seefigure3). In this caseu < w andthe
origin of velocity spaceis locatedoutsidethecircularhodograph.
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