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Abstract. Aninterestinguseful,andsimple,butnotwidely known propertyof Kepleriarmotion
relatingto thecircularshapeof theorbitin velocity spaces discussedh thispaper Thepropertyis
illustratedby a computersimulationprogram.A simpledynamicalderivationof thecircularshape
of thevelocity hodographs suggested.

1. Circular hodograph of the velocity vector for closed and open orbits

One of the mostinterestingaspectof Keplerianmotion (the motion along conic sections
governedsolelyby a centralforcewhosemagnitudds inverselyproportionalto the squareof
the distancefrom the force centre)concernghe shapeof its trajectoryin velocity space(or
momentunspace).

The velocity vector of a moving body at ary momentis directedtangentiallyto the
spatialtrajectory so thatin curvilinear motion the direction of the velocity vectorchanges
continuously We obtainthetrajectoryof motionin velocity space asfollows. For eachpoint
on the spatialtrajectory we draw the correspondingelocity vectorsothatits tail lies at the
origin of velocity spaceandits directionis parallelto thetangento thespatialtrajectoryatthe
pointin question.During the curvilinearnon-uniformmotion of the body, the directionand
magnitudeof this vectorchange.Thetip of this varying velocity vectorgenerates curve in
velocity space. Thenow-customarynameof ‘hodograph’wasgivento this curve by Hamilton
in 1846.

For a circular orbit, the magnitudeof the velocity is constantandsothe variationof the
velocity vectoris reducedo a uniformrotationabouttheorigin of velocity space.t is evident
thatthe hodograptof the velocity vectorfor the circular Keplerianmotion s itself a circle
whosecentreis locatedat the origin of velocity space. The radiusof this circle equalsthe
constanimagnitudeof thecircularvelocity.

As aplanetor asatellitemovesalongaclosecdelliptical orbit or alonganopenparabolicor
hyperbolictrajectory rotationof thevelocity vectoris non-uniform,andboththedirectionand
magnitudeof thevectorchange However, thesevariationsoccurin suchaway thattheendof
thevelocity vectorin this casealsogenerates circle (or anarcof a circle) in velocity space
but whosecentreis not atthe origin. In otherwords,the hodographof the velocity vectorfor
anarbitraryKeplerianmotionis acircle. Thisinterestingpropertyis ignoredin almostall the
numerousgextbooksonmechanicandgeneraphysicsthattreattheorbitalmotion. For closed
orbits,thepropertyis briefly discussedh anoptionalsupplemenin [1], andis usedn [2] for a

0143-0807/00/010001+10$30.00 © 2000 IOP Publishing Ltd 1



2 E | Butikov

©

2

N

q

4 '3

Figure 1. Keplerianorbit of a satelliteandthe velocity vectorsin spaceg(left), andhodograptof
the velocity vectorin velocity space(right). Identicalnumberson the left- andright-handsides
referto the sameinstantsof time.

geometricatlerivationof Keplersfirst law. In addition,anappropriatdaskis assignedn [3]
for numericalsolution.

Theaim of this paperis to draw attentionto this interestingproblemandsuggesa simple
analyticproofbasedn Newton’s laws of motion. But first we illustratethis propertywith the
help of the simulationprogramincludedin the educationakoftware packagg4], developed
recentlyby theauthor Theleft-handsideof figurel shavsthespatialtrajectoryof asatelliteor
aplanetthatmovesundertheinverse-squareentralforce. In equaltimeintenals,thevelocity
vectorsarefixed astangentgo the spatialtrajectory On the right-handsidethe samefixed
vectorsareshaovn in velocity space We canseeclearlythatduringthe motion of the satellite
alongthe elliptical orbit, the endof the varying velocity vectorgenerates circle in velocity
space.

The lower semicircle of the hodograph(starting at point 1 and moving clockwise)
correspondgo the right-handhalf of the elliptical orbit, during which the satellite moves
clockwisefrom perigeetowardsthe apogeewith a decreasingpeed. The other (upperin
figure 1) semicircleof thehodograpltorrespondso thesecondpartof theorbit, duringwhich
thesatellitemovesclockwisefrom apogedo perigeeandits speedncreases.

For an elliptical orbit, the diameterof this circular hodographequalsthe sum of the
magnitudesf the velocitiesvp andwva at perigeeandapogeerespectiely. At thesepoints
of anelliptical orbit the velocity vectorsare oppositelydirected. The centreof this circular
hodograplcorrespondingo theelliptic motionis displacedrom the origin of velocity space
in thedirectionof thevelocity vectorat perigee wp, throughthedistancgvp — va)/2 equalto
half thedifferenceof thevelocity magnitudest perigeeandapogeef theorbit (seefigure 1).

At the endof a minor axis of the elliptical orbit, the velocity vectorv is parallelto the
major axis. Hencew is orientedperpendiculariyto the diameterof the circular hodograph.
Joiningthe tip of v to thetips of vp andw, in velocity spacewe obtainedthe right-angled
triangleinscribedin thehodographin thistrianglew is theheightdroppedo thehypotenuse.
Therefore the speedv at the end of the minor axis equalsthe geometricmeanvalue of the
speedsat perigeeandapogeef theorbit: v = /vpva.

In figure 1 thepositionsof the satellitein the orbit andthe correspondingelocity vectors
arefixedat equaltime intervals,andwe caneasilyjudgevariationsin the angularvelocity of
rotationof thevelocity vectorasit traceghecircle. Comparingheanglesbetweersequential
positionsof the velocity vector we seethat nearposition 1, asthe satellitepasseghrough
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Figure 2. Parabolic trajectory of a body in a central gravitational field and the velocity vectors in
space (left), and hodograph of the velocity vector in velocity space (right). Identical numbers on
the left- and right-hand sides refer to the same instants of time.

perigee, the velocity vector rotates rapidly. Its rotation slows down as the satellite passes
through apogee of the orbit.

An open parabolic trajectory for Keplerian motion (the total energy for which is zero) can
be considered the limiting case of motion along a strongly elongated elliptical orbit whose
apogee recedes to infinity (figure 2). In this case, the velocity of the satellite at apogee
approaches zero. The hodograph is a closed circle whose diameter equals the velocity of the
body at the vertex of the parabola (the point on the trajectory nearest to the centre of force).
The circular hodograph corresponding to the parabolic Keplerian motion passes through the
origin of velocity space. The origin is reached when the body recedes to infinity. This motion
is of infinite duration.

For an infinite hyperbolic motion in an inverse-square central gravitational field, the
hodograph of the velocity vector is also circular (figure 3). In this case, the radius of the
velocity hodograph is smaller than the maximal velooeifyof the body at the point nearest to
the centre of force. The origin of velocity space is outside the circle.

In hyperbolic motion, the body approaches the centre of force from infinity, where its
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Figure 3. Hyperbolic trajectory of a body in a central gravitational field and the velocity vectors
in space (left), and hodograph of the velocity vector in velocity space (right). Identical numbers
on the left- and right-hand sides refer to the same instants of time.
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velocity is non-zeroandis directedalong one of the asymptotesf the hyperbola. In the
hodographthe velocity at infinity is tangentialto the circle. In the courseof motion the
velocity vectorgenerates partof the circle away from the origin. Startingfrom the point of
tangeng, themagnitudeof thevectorgraduallyincreasesindreachedts maximalvaluewhen
the vectorextendsfrom the origin of velocity spaceto the furthestpoint of the circle. This
vectoris the velocity of the body whenthe body passeshroughthe vertex of the hyperbolic
trajectory(the point nearesto theforcecentre).

The velocity vector then gradually shortens,its end moving further along the circle.
Eventuallytheendof thevelocity vectorreachesheotherpointof tangeng wherethevelocity
assumedts initial magnitudeandthe body is infinitely remote. This secondtangentto the
hodograplhis directedparallelto the otherasymptoteof thehyperbolictrajectory alongwhich
thebodyrecedes.

2. A simple dynamical derivation of the circular shape of the velocity
hodograph

Accordingto Goldstein5], thecircularshapeof thehodograpHor theelliptical orbitswasfirst
communicatedh 1846by Hamilton,whoseinvesticationwasbasedntheuseof theinvariant
Laplaceor Runge—Lenxector Thisvectorcanbereferredio asadynamicainvariantsinceit
depend®ntheparticularforcelaw (specifically theinverse-squarkaw), while suchinvariants
astheangulatmomentumandenegy canbecalledgeometricalsincethey dependngeneral
symmetrypropertieof spaceandtime. HamiltonprovesthattheLaplacevectoris constanas
apreliminaryto demonstratinghatthe hodographis circular Certainly the invariantnature
of the Laplacevectorandthecircularshapeof the velocity hodograptarecloselyrelated.

Neverthelessit is possibleto give a simple,but rigorousproof of the circularhodograph
theoremwithout referringto the Laplacevector The theoremcanbe proved geometrically
in themannerfavouredby Newton. The proofis baseddirectly on Newton’s laws of motion
appliedto a particlethatmovesunderthe centralgravitationalforce F (r) = GmM /2.

Accordingto Newton'’s law of motion, the effect of forceis to modify the momenturmof
the body thatis, its velocity, ratherthanits position. The vectordv/dt of the acceleration
producedytheforceof gravity isalwaysdirectedowardsthecentreof force,andits magnitude
is inverselyproportionalto the squareof distancer:

dov 1r
— =—-GM—, 1
& 1)

Next we eliminatethe variablel1/r? from this equationusingthe law of conseration of
angularmomentum:

rer’

L =m|r x v| = mrv, = mr?g. (2)

Herev, = rg¢ is the transersecomponentf the velocity of the particle (the component
orthogonalto the radiusvector),and¢ = dg/dr is the angularvelocity. Sincethe angular
momentunof the particleremainsconstanduringthe motionin a centralforcefield, for ary
point of the trajectorythe squareof the distance- from the origin canbe expressedvith the
helpof equation(2) in termsof theangularvelocity ¢ anda constanwalueof L:

1 m. mdp

== 3
2o LY L ®)
Substitutingl/r? given by equation(3) into equation(1), we find thatthe incrementin
thevelocity vectorduringthetime intenal At is given by theinfinitesimalvector Av whose
directionis antiparallelto » andwhosemagnitudeis proportionalto the angle Ag, through
which theradiusvectorof the particlerotatesduring At¢:

GMm
v = = Ag. (4)
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We notethatthis proportionalitybetween Av| and A¢ holdsonly for the motionin a
centralfield whosestrengthis proportionalto 1/r2. Hencethe circular form of the velocity
hodograpHthe propertythatwe aregoingto prove) is aninherentpropertyof inverse-square
centralfields.

vV=w+u

Av

w=(v,+v)/2

Figure 4. Keplerianorbit of a satelliteandthe velocity vectorin spacegleft), andhodograptof the
velocity vectorin velocity spacgright).

A geometricinterpretationof equation(4) is shovn in figure 4. Eachtime the spatial
radiusvectorr of the orbiting particleturnsthroughaninfinitesimalangle Ag, the velocity
vectorv is incrementedy Av, whosemagnitudel Av| is proportionalto Ag. Thisimplies
thatthe elementarywectorsAwv in velocity spacdie alonga circle, thatis, the polygonalline
formedby sequentialAv vectorsis circumscribedy a circle (figure4). Theradiusu of this
circle,accordingto equation(4), equalsGMm /L. At eachmomenttheradiusvectoru of the
hodographs perpendiculato Av and,henceto the spatialradiusvectorr. In otherwords,
the (non-uniform)rotationof thepositionvectorr in spaceleft-handsideof figure4) andthe
correspondingotationof vectorw in velocity spacgright-handsideof figure4) alwaysoccur
90° outof phase.

Thus,equation(4) provesthatthehodograplof thevelocityvectoris acircle. Theconstant
valueu = GMm/L of thecoeficientof proportionalitybetween Av| andA¢ in equation4)
givestheradiusof this circularhodograptof the velocity vector

It is convenientto expressradiusu of the velocity hodographin termsof velocity vp at
perigeeandthe circularvelocity v; for the perigeedistancerp. Sinceve = /GMm/rp and
L = mrpvp, We obtainthe expression:

v2

u=-2. (5)
vp
If the satelliteis launchednto a circularorbit (vep = v), equation(5) yieldsu = vc. In

thistrivial caseheradiusof thehodograpltlearlyequalghecircularvelocity. Foranelliptical
orbit, it is possibleto expresgheradiusu = GMm /L of thehodographn termsof velocities
vp andvp atthe perigeeandapogeerespectiely. We canusethe laws of the conseration
of enegy andangularmomentumnfor this purpose.Equatingthe valuesof thetotal enegy at
thesepointsrp andra, we write:

m Mm m , Mm

5 VP Grp = 5V GrA. (6)
We next solve this equationfor GMm, and substituteinto u = GMm/L the expression
obtainedtogethermwith the (constantangularmomentuml, calculatedsay for the perigee:
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L = mrpvp. Theratio of distancesp/ra canbe eliminatedwith the help of the relation
revp = rava. (Thevaluesof the angularmomentumare equalat the perigeeand apogee).
Finally, we obtainthefollowing expressiorfor theradiusu of thevelocity hodograph:

1
u= é(vp+vA). (7)

By virtue of this property we canrepresenthe velocity vector v for ary point of an
elliptical orbit asthevectorsumof thefollowing two vectorsw andu (seefigure4). Oneterm
of the sumis the constanwvectorw = (vp + va)/2 of magnitude(vp — va)/2, directedalong
thevectorvp of thevelocityatperigee.Thisvectorw extendsfrom theorigin of velocity space
to the centreof the circularhodograph.The secondermis avectoru of constanmagnitude
u = (vp +vp)/2, whosedirectionis alwaysperpendiculato the spatialradiusvectorr of the
orbiting body.

Thisrepresentationf thevelocity vectorasthesumof two vectors(v = w +u) is useful
for solving certainproblemsconcerningkeplerianmotion.

The derivation of equation(4) that givesthe proof of the circular form of the velocity
hodographaswell asthe geometridnterpretatiorof equation(4) discusse@bove, arebased
ontheinverse-squardependencef the centralforce on distance. The assumptioraboutthe
closedtrajectoryis usedonly in the calculationof the hodograptradiusu in termsof vp and
va. Consequentlythe circular form of the velocity hodographs characteristiaot only of
closed(circularandelliptical) orbits,but alsoof open(parabolicandhyperbolic)trajectorieof
motionin acentralfield whoseforceis inverselyproportionato thesquareof thedistancdrom
thecentre.For theparabolidrajectorythetwo termsof thesumu +w have equalmagnitudes:
u = w = vp/2. For ahyperbolicmotion,the diameter2u of thecircularhodographs smaller
thanthe velocity vp at the vertex of the hyperbola(seefigure 3). In this casex < w andthe
origin of velocity spacds locatedoutsidethe circularhodograph.
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