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Abstract. The phenomenon of dynamic stabilization of the inverted pendulum whose pivot
is forced to oscillate with a high frequency in vertical direction is revisited. A simple physically
meaningful explanation of the phenomenon is presented, followed by the derivation of an
approximate quantitative criterion of stability. A computer program simulating the physical
system is developed, which aids the analytical investigation of the phenomenon in a manner
that is mutually reinforcing. Material is appropriate for undergraduate university students.

1. Introduction: The physical system

A fascinating feature in the behavior of a simple rigid pendulum whose suspension point is
forced to vibrate with a high frequency along the vertical line is the dynamic stabilization
of the inverted position. When the frequency and the amplitude of these vibrations are large
enough, the inverted pendulum shows no tendency to turn down. Moreover, at moderate
deviations from the vertical inverted position the pendulum tends to return to it. Being
deviated, the pendulum executes relatively slow oscillations about the vertical line on the
background of rapid oscillations of the suspension point.

Simple hand-made devices can be used for a classroom demonstration of this fascinating
phenomenon of classical mechanics. A jig saw or an old electric shaver’s mechanism can
serve perfectly well to force the pivot of a light rigid pendulum vibrating with a high enough
frequency and sufficient amplitude to make the inverted position stable (Figure 1).

The hand holds the shaver in the position which provides the vertical direction of the pivot
oscillations. If the rod is turned into the inverted vertical position, it remains there as long as
the axis is vibrating. When the rod is slightly deflected to one side and released, it oscillates
slowly about the inverted position. Many videos illustrating this unexpected behavior of the
pendulum can be found on the web.

This surprising phenomenon of dynamic stabilization was predicted originally by
Stephenson [1] more than a century ago (in 1908). In 1951 such extraordinary behavior of the
pendulum was rediscovered, explained physically and investigated experimentally in detail
by Pjotr Kapitza [2]. The corresponding physical device is now widely known as “Kapitza’s
pendulum. Below is a citation from the paper of Kapitza [3] published in the Russian journal
“Uspekhi”:
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Figure 1. Demonstration of dynamic stabilization of the inverted pendulum.

“Demonstration of oscillations of the inverted pendulum is very impressive. Our
eyes cannot follow the fast small movements caused by vibrations of the pivot, so
that behavior of the pendulum in the inverted position seems perplexing and even
astonishing ... When we carefully touch the rod of the pendulum trying to deviate it
from the vertical, the finger feels the resistance produced by the vibrational torque.
After acquaintance with the experiment on dynamic stabilization of the inverted
pendulum we reasonably conclude that this phenomenon is as much instructive as
the dynamic stabilization of a gyroscope, and should be necessarily included in
lecture demonstrations on classical mechanics.”

Not surprisingly that after Kapitza this simple but very curious and intriguing physical
system attracted attention of many researchers, and the theory of the phenomenon may seem
to be well elaborated (see, for example, [4]). Nevertheless, more and more new features in
the behavior of this really inexhaustible system are reported regularly. One can find many
good texts and hundreds of papers on the subject. A vast list of references is provided in [5].
The author of this paper also contributed to investigation of the parametrically forced inverted
pendulum (see [6]–[9]).

However, a great majority of papers and monographs on the subject are advanced texts
written for experts and specialists, in which parametric excitation of the pendulum and
associated phenomena are explained in terms of the theory of differential equations with
periodic coefficients (Floquet theory, Hill and Mathieu equations). The nature of such texts is
predominantly mathematical and actually gives very little insight into the phenomena, whose
physical sense remains buried deeply in severe and nontransparent mathematics, which could
turn out to be abstract and very complicated for physics students and their teachers.

In the abundant literature on the subject it is hardly possible to find a sufficiently
simple and physically clear interpretation of the inverted pendulum dynamic stabilization.
Understanding this interesting phenomenon is certainly a challenge to our intuition. The
principal aim of this paper is to present a quite simple qualitative physical explanation of the
phenomenon, and to find out the conditions at which it is possible to observe it. We focus
also on an approximate quantitative analysis of the slow motion of the pendulum which can
be developed on the basis of the suggested approach to the problem.
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We consider for simplicity the rigid planar pendulum of length l with a point mass on
its end assuming that all mass m of the pendulum is concentrated here. The force of gravity
mg creates a restoring torque −mgl sinφ which is proportional to the sine of the angle φ of
deflection from the equilibrium position. When the pivot is at rest, due to this this torque the
pendulum swings about the lower stable equilibrium position.

When the pivot is forced to move with an acceleration, it is convenient to describe the
motion of the pendulum using the non-inertial frame of reference associated with the pivot. To
make the Newton’s laws of motion applicable in this accelerated reference frame, we should
add to all “real” forces the “pseudo” force of inertia. Due to translational acceleration aframe

of the frame, an additional force, the force of inertia Fin = −maframe, is exerted on the
pendulum. This force is directed oppositely to the acceleration of the frame.

We assume that the pivot is forced to execute a given harmonic oscillation along the
vertical line with a frequency ω and an amplitude a, i. e., the motion of the axis is described
by the following equation:

z(t) = a cosωt or z(t) = a sinωt. (1)

Hence the pseudo force of inertia Fin(t) exerted on the bob in the non-inertial frame of
reference associated with the pivot also has the same sinusoidal dependence on time:

Fin(t) = −m
d2z(t)

dt2
= −mz̈(t) = mω2z(t). (2)

This force is equivalent to a periodic modulation of the force of gravity. Indeed, Fin(t) is
directed downward during the time intervals for which z(t) < 0, i.e., when the axis is below
the middle point of its oscillations. We see this directly from equation for Fin(t), Eq. (2),
whose right-hand side depends on time exactly as the z-coordinate of the axis (see Eq. (1)).
Therefore during the corresponding half-period of the oscillation of the pivot this additional
force is equivalent to some strengthening of the force of gravity. During the other half-period
the axis is above its middle position, and the action of this additional force is equivalent to
some weakening of the gravitational force. When the frequency and/or amplitude of the pivot
are large enough (when aω2 > g), for some part of the period the apparent gravity (the sum
of real gravity and the force of inertia) is even directed upward.

2. Qualitative explanation of the dynamic stabilization

To explain physically the effect of dynamic stabilization of the inverted pendulum caused by
fast vibrations of the pivot, we should take into account the influence of the force of inertia
averaged over the period of these fast vibrations. According to eq. (2), the force of inertia
depends on time sinusoidally and its mean value for a period is zero. However, the mean
value of the torque of this force with respect to the axis of the pendulum is not zero. It is
this mean torque of the force of inertia that is responsible for extraordinary, counterintuitive
behavior of the pendulum.

To better understand the influence of the force of inertia upon the system, we first forget
for a while about the force of gravity. Without oscillations of the pivot, in the absence of
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Figure 2. The forces of inertia F1 and F2 exerted on the pendulum in the noninertial reference
frame at the extreme positions 1 and 2 of the oscillating axis A.

gravity the pendulum is in the neutral state of equilibrium at any orientation of its rod. Let
us begin with the case in which the rod of the pendulum is oriented horizontally, that is, at
the right angle θ = π/2 with respect to direction of the pivot oscillations (see Figure 2, a). If
the massive bob has zero initial velocity, in the absence of gravity it remains practically at the
same level with respect to the laboratory inertial reference frame while the axis A oscillates
between the extreme points 1 and 2. The rod simply turns down and up through a small angle
δ, as shown in the upper panel of Figure 2, a.

In the non-inertial frame of reference associated with the oscillating axis, the same
motion of the rod is shown in the lower panel of Figure 2, a: The bob of the pendulum moves
up and down along an arc of a circle and occurs in positions 1 and 2 at the instants at which
the oscillating axis reaches its extreme positions 1 and 2, respectively (the upper panel of
Figure 2, a). Indeed, at any time moment the rod has the same simultaneous orientations in
both reference frames.

In position 1 the force of inertia F1 exerted on the bob, according to Eq. (2), is directed
upward, and in position 2 the force F2 of the same magnitude is directed downward. The
arm of the force in positions 1 and 2 is the same. It is evident that the torque of this force
of inertia, averaged over the period of oscillations, is zero. Hence in the absence of gravity
this orientation of the pendulum (perpendicularly to the direction of the axis’ oscillations)
corresponds to a dynamic equilibrium position (an unstable one, as we shall see later).

Now let us consider the case in which on average the rod is deflected through an arbitrary
angle θ from the direction of oscillations, and the axis oscillates between extreme points 1 and
2, as shown in the upper panel of Figure 2, b. By virtue of these vertical oscillations of the
axis the rod turns periodically up and down from its middle position through some small angle
δ. In the non-inertial frame of reference associated with the oscillating axis, the bob moves
at these oscillations between points 1 and 2 (the lower panel of Figure 2, b) along an arc of a
circle whose center coincides with the axis A of the pendulum.
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We note again that at any time moment the rod has the same simultaneous orientations
in both reference frames. This is true at moment 1 as well as at moment 2. When the axis
is displaced upward (to position 1 from its midpoint), the force of inertia F1 exerted on the
bob is also directed upward. In the other extreme position 2 the force of inertia F2 has an
equal magnitude and is directed downward. However, now the torque of the force of inertia in
position 1 is greater than in position 2 because the arm of the force in this position is greater.

Therefore on average the force of inertia creates a torque about the axis that tends to turn
the pendulum upward, into the vertical inverted position, in which the rod is parallel to the
direction of oscillations. Certainly, if the pendulum makes an acute angle with respect to the
downward vertical position, the mean torque of the force of inertia tends to turn the pendulum
downward.

Thus, the torque of the force of inertia, averaged over a period of oscillations, tends to
align the pendulum along the direction of forced oscillations of the axis. Figure 2, b presents
an utterly simple and clear explanation to the origin of this torque. Since this torque is induced
by vibrations of the axis, Kapitza (see [2]–[3]) called it “vibrational,” but we can also call it
“inertial,” because its origin is related to the force of inertia that arises in the reference frame of
the axis due to the fast forced vibrations of the axis. For given values of the driving frequency
and amplitude, this mean torque depends only on the angle of the pendulum’s deflection from
the direction of the pivot’s vibration.

This mean inertial torque does not depend on time explicitly, and its influence on the
pendulum can be considered exactly in the same way as the influence of other ordinary
external torques, such as the torque of the gravitational force. The inertial torque gives
the desired explanation for the physical reason of existence (in the absence of gravity) of
the two stable equilibrium positions that correspond to the two preferable orientations of the
pendulums rod along the direction of the pivots vibration.

With gravity, the inverted pendulum is stable with respect to small deviations from the
inverted vertical position provided the mean torque of the force of inertia is greater than the
torque of the force of gravity that tends to tip the pendulum down.

3. An approximate quantitative analysis

On the basis of the above-described physical considerations, we can calculate the criterion
of dynamic stabilization, that is, determine the quantitative conditions, which provide the
stability of the inverted pendulum. Rapid vertical vibrations of the axis make the inverted
position stable if at small deflections from this position the torque of the force of inertia,
averaged over the period of rapid oscillations, is greater in magnitude than the torque of the
gravitational force that tends to turn the pendulum down.

Due to the forced vertical vibrations of the axis, the force of inertia Fin(t) oscillates with
a high frequency ω of these vibrations. The momentary arm of this force (the horizontal
distance between the axis and the pendulum’s bob) also varies with the same frequency ω. As
we have seen in the previous section, the fast variations of this arm together with synchronous
fast variations of the force of inertia are responsible for the effect of dynamic stabilization.
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What we need to calculate now is the momentary torque of this oscillating force, and the
non-zero mean value of this torque.

We can consider, after Kapitza [2]–[3], the motion of the pendulum whose axis is
vibrating with a high frequency as a superposition of two components: a “slow” or “smooth”
component, whose variation during a period of forced axis’ vibrations is small, and a “fast” (or
“vibrational”) component. Let’s imagine an observer who does not notice (or does not want
to notice) the vibrational component of this compound motion. The observer, which uses, for
example, a stroboscopic illumination with a short interval between the flashes that equals the
period of forced vibrations of the pendulum’s axis, can see only the slow component of the
motion. Our principal interest is to determine this slow component.

In other words, we can represent the instantaneous value φ(t) of the pendulum’s
deflection angle from the vertical (see Figure 2) as the sum of a slowly varying function
θ(t) and a small fast term δ(t): φ(t) = θ(t) + δ(t). This additional angle δ(t) oscillates with
the high frequency ω, and its mean value is zero. At time moment t the axis is displaced from
its mid-point through z(t). If θ = 90◦ (see Figure 2, a), the momentary value of δ(t) equals
z(t)/l. When θ is non-zero (see Figure 2, b), δ(t) ≈ (z(t)/l) sin θ.

At time moment t the bob in its oscillating motion along the arc between the utmost
points 1 and 2 is displaced from its mid-point through the distance lδ(t). This displacement
adds to the arm of force Fin(t) the value lδ(t) cos θ, as can be seen from Figure 2, b. Because
δ(t) = (z(t)/l) sin θ, this additional arm z(t) sin θ cos θ varies with time sinusoidally, in the
same way as z(t). It is just this additional variable arm that is responsible for the effect of
dynamic stabilization, because it varies with time in the same way as does itself the force of
inertia: Fin(t) = mω2z(t). Hence the magnitude of additional torque of the force of inertia
associated with this additional variable arm at any time moment t is proportional to z2(t):

Fin(t)z(t) sin θ cos θ = mω2z2(t) sin θ cos θ. (3)

In order to calculate the mean torque of the force of inertia, we can average expression (3)
over the period T = 2π/ω of the fast oscillations, assuming the slow varying angle θ to be
constant (“frozen”) during this short period. Taking into account that at sinusoidal vibration
of the pivot ⟨z2(t)⟩ = a2/2, where a is the amplitude of the pivot fast vibration, we find the
desired mean value ⟨Tin(t)⟩ of the torque:

⟨Tin(t)⟩ = −1

2
ma2ω2 sin θ cos θ = −1

4
ma2ω2 sin 2θ. (4)

For θ < π/2, that is, if the pendulum makes an acute angle with the upward vertical
direction, the average torque of the force of inertia tends to turn the pendulum up to the
vertical. Otherwise, this mean torque tends to turn the pendulum downward. Hence in the
absence of gravity, instead of a neutral equilibrium at an arbitrary angle, the pendulum has
two equivalent dynamically stabilized equilibrium positions pointing (up and down) along
both directions of the forced fast oscillations of the axis.

The other (non-vibrating) part of the arm equals l sin θ, so it is nearly constant during
the period T of the fast oscillations. Therefore the torque of the oscillating force of inertia
Fin(t) = mω2z(t) associated with this arm, Fin(t)l sin θ = mω2z(t)l sin θ, has zero mean
value, because at sinusoidal vibrations of the pivot ⟨z(t)⟩ = 0.
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With gravity, the mean torque of the force of inertia is added to the mean torque created
by the force of gravity, ⟨Tgrav(t)⟩ = mgl sin θ, which is tending to tip the pendulum down.

At small deviations from the vertical, when θ ≪ 1, we can replace sin 2θ in Eq. (4) by
its argument 2θ. Hence for small deviations from the upper vertical both the mean torque of
the force of inertia and the mean torque of the force of gravity are proportional to the angle θ:

⟨Tin(t)⟩ ≈ −1

2
ma2ω2θ, ⟨Tgrav(t)⟩ ≈ mglθ. (5)

Comparing these torques, we see that the mean torque of the force of inertia ⟨Tin(t)⟩ can
exceed in magnitude the torque of the gravitational force (at small deviations θ from the
vertical), when the following condition is fulfilled:

a2ω2 > 2gl. (6)

This is the desired approximate criterion of dynamic stabilization of the pendulum in the
inverted position. Thus, the inverted position of the pendulum is stable if the maximal velocity
aω of the vibrating axis is greater than the velocity

√
2gl attained by a body during a free fall

from the height that equals the pendulum length l. We can write this approximate criterion
of stability in another form, using the expression ω2

0 = g/l for the frequency of small natural
oscillations of the pendulum in the absence of forced vibrations of the axis. Substituting
g = lω2

0 in Eq. (6), we get
a

l
· ω

ω0

>
√
2. (7)

According to Eq. (7), for stabilization of the inverted pendulum the product of
the dimensionless normalized amplitude of forced oscillations of the axis a/l and the
dimensionless (normalized) frequency of these oscillations ω/ω0 must exceed

√
2. For

instance, for the pendulum whose length l = 20 cm and the frequency of forced oscillations
of the axis f = ω/2π = 100 Hz, the amplitude a must be greater than 3.2 mm. For a physical
pendulum, the condition of dynamic stability in the inverted position is expressed by the same
equation (6) or (7) provided we imply by the quantity l the equivalent length of the physical
pendulum I/md, where I is the moment of inertia with respect to the axis of rotation, m is
the mass, and d is the distance between the axis and the center of mass. We note that the
criterion (6) or (7) is independent of friction.

The above-developed approach is not restricted to small deviations of the pendulum from
the vertical. In particular, for given values of the frequency ω and amplitude a of forced
oscillations of the pivot at which criterion (6) or (7) is fulfilled, we can find the maximal
admissible angular deflection from the inverted vertical position θmax for which the pendulum
will return to this position. To do this, we should equate the average torque of the force of
inertia ⟨Tin(t)⟩ given by Eq. (4), which tends to return the pendulum to the inverted position,
and the torque mgl sin θ of the gravitational force, which tends to tip the pendulum down.
This yields the following maximal deviation:

cos θmax =
2gl

a2ω2
= 2

(
ω0

ω

l

a

)2

. (8)
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This expression for an admissible angular excursion from the inverted equilibrium position is
valid for arbitrarily large values of θ. The greater the product ωa of the frequency and the
amplitude of forced vibrations of the axis, the closer the angle θmax to π/2.

If the angle θ equals ±π/2, that is, if the pendulum is oriented perpendicularly to the
direction of pivot’s oscillations, the mean torque of the force of inertia, according to Eq. (4), is
zero: in the absence of gravity the pendulum at such orientations is in equilibrium. However,
these equilibria are unstable: at a slightest deviation from such orientation to one or to the
other side the mean torque of the force of inertia becomes non-zero and, according to Eq. (4),
tends to increase the deviation, turning the pendulum towards the nearest stable equilibrium,
in which the pendulum is oriented along the direction of forced vibrations of its pivot. With
gravity, deviations from the upper vertical through the angle ±θmax given by Eq. (8) also
correspond to unstable equilibrium positions.

4. Oscillations about the equilibrium positions

Being deviated from the vertical position through an angle that does not exceed θmax, the
pendulum will execute relatively slow oscillations about this inverted position. This slow
motion occurs both under the mean torque of the force of inertia and the force of gravity.
Fast oscillations with the frequency of forced vibrations of the axis superimpose on this slow
motion of the pendulum. With friction, the slow motion gradually damps, and the pendulum
wobbles up settling eventually in the inverted position.

The simulation program “Pendulum with the vertically driven pivot” [10] demonstrates
clearly slow oscillations of the pendulum about the inverted position, distorted by high
frequency vibrations of the pivot. The program allows us to change parameters of the system
in wide ranges and to vary the time scale in order to make visible subtle details of such
counterintuitive behavior.

Similar behavior of the pendulum with vibrating pivot can be observed when it is
deflected from the lower vertical position. But in this case the frequency ωdown of slow
oscillations is greater than the frequency ωup for the inverted pendulum. Indeed, for the
hanging down pendulum both the averaged torque of the force of inertia and the torque of
the gravitational force tend to return the pendulum to the lower vertical position. Therefore
the frequency ωdown of these slow oscillations is greater than the frequency ωslow of slow
oscillations in the absence of gravity. The frequency ωdown is also greater than the frequency
ω0 of natural oscillations of the same pendulum under the gravitational force in the absence
of forced vibrations of the axis. Regarding the latter conclusion, Kapitza noted that the clock
with a pendulum subjected to a fast vertical vibration will be always ahead of time.

The approximate differential equations for the slow motion of the pendulum θ(t) can
be written under the assumption that the angular acceleration θ̈(t) in this slow motion is
determined both by the mean torque of the force of gravity mg sin θ and the torque of the
force of inertia ⟨Tin(t)⟩ given by Eq. (4). For small oscillations sin θ ≈ θ, and we can write

θ̈ = (ω2
0 −

1

2

a2

l2
ω2)θ, θ̈ = (−ω2

0 −
1

2

a2

l2
ω2)θ (9)
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for oscillations about the inverted and hanging down positions, respectively. The mean torque
on the right-hand side of Eqs. (9) is calculated approximately under the assumption that the
slowly varying angular coordinate θ(t) is “frozen.”

It follows from (9) that frequencies ωdown and ωup of small slow oscillations about
the lower (θ = 0) and upper (θ = ±π) equilibrium positions are given by the following
expressions:

ω2
down =

a2ω2

2l2
+ ω2

0, ω2
up =

a2ω2

2l2
− ω2

0. (10)

If we put ω0 = 0 into Eqs. (10), they yield for the frequency ωslow of small slow oscillations
of the pendulum with vibrating axis in the absence of the gravitational force the following
approximate expression:

ωslow = ω
a√
2 l

. (11)

These oscillations can occur about either of the two equivalent stable equilibrium positions
located oppositely one another along the direction of forced vibrations of the axis.

20.0

0
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2 4 6 8 10 12 14 160
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(no friction, axis frequency 16.0 w , axis amplitude 15.3 l, initial ang. velocity 0.5 w )
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Figure 3. The graphs of φ(t) for oscillations of the pendulum about the lower and upper
equilibrium positions, respectively, and the graph z(t) = −a cosωt of the pivot motion. The
graphs are obtained by a numerical integration of the exact differential equation (12) for the
momentary angular deflection.

Expressions (10) for the frequencies ωup and ωdown of slow small oscillations are
illustrated by the graphs in Figure 3, obtained by a numerical integration of the exact
differential equation for the momentary angular deflection φ(t) = θ(t) + δ(t):

φ̈+ (
g

l
− a

l
ω2 cosωt) sinφ = 0. (12)

The graphs in Figure 12 are plotted with the help of the simulation program [10].
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It is assumed in Eq. (12) that φ is measured from the lover position. We note that
oscillations about the inverted position can be formally described by the same differential
equation, Eq. (12), with negative values of g. In other words, we can treat the acceleration of
free fall g in (12) as a control parameter whose variation is physically equivalent to variation
of the force of gravity exerted on the pendulum. When parameter g is reduced to zero and
further on to negative values, the time-independent torque of the force of gravity turns to zero
and then reverses its sign. Such reversed force of “gravity” tends to bring the pendulum to the
inverted position φ = π, making this position stable (in the absence of the pivot vibration),
and making position φ = 0 – unstable. That is, at g < 0 the upper equilibrium position in (12)
is equivalent to the lover position at positive values of parameter g.

To make the verification of our approximate expressions (10) for the frequencies of
slow oscillations with the simulation program [10] easier, the following values of the system
parameters were chosen for numerical integration: the amplitude of the pivot vibration
a = 0.153 l, its frequency ω = 16ω0, so that (a2/2l2)ω2 = 3.0ω2

0 . In this case Eqs. (10)
give for the frequency about the lower position the value ωdown = 2ω0, which is twice the
natural frequency. This means that the period of slow oscillations Tdown must equal one half
of the period T0 of natural oscillations in the absence of pivot vibrations. Figure 3 shows that
the pendulum executes, as expected, exactly two slow oscillations about the lower equilibrium
position during one period T0, which in this case (at ω = 16ω0) equals 16 periods T = 2π/ω

of pivot vibrations. (The units T are used for the time scale.)
For the frequency of slow oscillations about the inverted position, Eq. (10) gives ωup =√

2ω0, so that their period should equal Tup = T0/
√
2. This value of the period is also in good

agreement with the lower graph in Figure 3.
The graphs in Figure 3 show that the slow motion is distorted by fast oscillations most

of all near the utmost deflections of the pendulum, while the distortions of φ(t) graphs are
rather insignificant when the pendulum crosses the equilibrium positions. This peculiarity is
also consistent with the above developed approach. Indeed, the angular amplitude of the fast
oscillations δ(t) is proportional to the sine of the mean deflection angle θ that describes the
slow component of pendulum’s oscillations: δ(t) = (z(t)/l) sin θ.

5. Concluding discussion

A simple physical explanation is suggested in this paper for the phenomenon of dynamic
stabilization of the inverted pendulum whose pivot is forced to oscillate with a high frequency.
The approximate criterion (6) or (7) obtained here on the basis of the suggested approach
agrees with the well-known lower boundary of stability of the inverted pendulum obtained
by approximating the exact nonlinear equation of motion, Eq. (12), with the linear Mathieu
equation, the solutions of which are widely documented in the extensive literature concerning
the problem (see, e. g., [11]–[12]). However, the investigation based on the Mathieu equation
and infinite Hill’s determinants gives little physical insight into the problem and, more
importantly, is restricted to motion within small deviations from the vertical. On the contrary,
the above explanation in this paper shows clearly the physical reason for the dynamic
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stabilization of the inverted pendulum and is free from the restriction of small angles.
Criterion of stabilization (6) or (7) is obtained by a decomposition of pendulum’s motion

on slow oscillations and fast vibrations with the driving frequency. Hence these results,
being physically clear and transparent, are approximate and valid when the amplitude of
the forced vibration of the axis is small compared to the pendulum’s length (a ≪ l), and
when their frequency is high enough (ω ≫ ω0). An enhanced and more exact analytical
criterion of dynamic stabilization of the inverted pendulum, valid in a wider region of the
system parameters, is obtained in Ref. [9].

For some intervals of the pivot frequency the lower equilibrium position becomes
unstable due to the phenomenon of parametric resonance at which small initial oscillations
increase progressively. This conclusion does not follow from the investigation based on the
decomposition of motion on slow and rapid components. This is by no means surprising
because parametric resonance occurs at such driving frequencies (for the principal parametric
resonance ω ≈ 2ω0) for which this decomposition is not applicable.

The inverted (dynamically stabilized) position also becomes unstable at large enough
amplitudes of the pivot oscillations: the pendulum is involved in so-called “flutter” oscillations
about the inverted position. With friction, such oscillations eventually become stationary
(limit cycle). Their period covers two cycles of excitation. The “flutter” mode of oscillations
is closely related to ordinary parametric resonance of the hanging down pendulum. This
relationship is shown in Ref. [9], in which also the upper boundary of stability of the inverted
pendulum is obtained. We emphasize that parametric resonance, flutter mode and other
complicated regular and chaotic regimes occur at such frequencies and amplitudes of the pivot,
for which the decomposition of motion on the slow and fast components is not applicable.
Various complicated modes of behavior of the parametrically forced pendulum are described
in Refs. [7]–[9]. These modes are illustrated by the simulation program [10], which contains a
wealth of predefined examples of extraordinary, counterintuitive motions of the pendulum. To
observe these motions, there is no need in defining the required parameters: desired examples
can be launched by simply choosing them from the list.
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