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Abstract. Large oscillations of a simple rigid pendulum with amplitudes close to

180◦ are treated on the basis of a physically justified approach in which the cycle of

oscillation is divided into several stages. The major part of the almost closed circular

path of the pendulum is approximated by the limiting motion, while the motion in the

vicinity of the inverted position is described on the basis of the linearized equation. The

accepted approach provides additional insight into the dynamics of nonlinear physical

systems. The final simple analytical expression gives the values for the period of large

oscillations that coincide with high precision with the values given by the exact formula.
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1. Introduction

The old problem of large oscillations of a simple planar pendulum continues to attract

attention of the academic community. Dozens of papers on the subject appeared during

the last decade in EJP, AJP, and other journals — see, for example, [1] – [5] and

references therein. In most of the papers various approximation schemes have been

developed to express the large-angle pendulum period by simple formulae in terms of

elementary functions. Each of the authors usually claims that the formula proposed by

him is more simple and accurate when compared with other approximate formulae. A

detailed comparison of several approximate expressions that have appeared in recent

publications can be found in [6]. The common feature of all suggested approximation

schemes can be reduced to a search for some empirical expression for the period T (φm)

which gives for large amplitudes φm an acceptable numerical agreement with the values

obtained from the exact formula given by the complete elliptic integral of the first kind

K(q):

T (φm) = T0
2

π
K(sin2(φm/2)), K(q) =

π/2∫
0

dx√
1− q sin2 x

. (1)

where T0 = 2π/ω0 = 2π
√
l/g is the natural period and ω0 is the frequency of oscillations

with infinitely small amplitude, l is the effective length of the pendulum, and g is the

acceleration due to gravity.

The approximate expressions for the period that can be found in the literature

(see [6] and references therein) give indefinitely increasing errors as the amplitude of

the pendulum tends to 180◦. Moreover, all these exercises with various approximation

schemes give little physical insight in the nonlinear dynamics of the pendulum behavior

at large amplitudes.

In the present letter we suggest a radically different approach to the problem of

extremely large amplitudes. Our approach is based on physically clear presentation of

large oscillations as consisting of several stages during which the motion can be described

analytically with high precision in terms of elementary functions. The principal idea of

our approach is very simple: the motion of the pendulum in the close vicinity of the

inverted position can be described by a linear differential equation (if we choose as a

variable the angle α = π − φ which the pendulum makes with the upper vertical line),

while the remaining part of the pendulum’s path (constituting nearly a full circle) is

almost indistinguishable from the limiting motion (motion along the separatrix), for

which a simple solution in elementary functions is available. Precision of the final (very

simple) formula for the period, equation (14), increases as the amplitude approaches

180◦. We have already used this idea earlier in [7] while comparing large amplitude

oscillations of the pendulum with full revolutions. The aim of the present letter is to

draw attention to this fruitful approach that gives additional physical insight into the

nonlinear dynamics of the pendulum – a very popular physical model often encountered

in various undergraduate courses.
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2. The phase portrait of the pendulum

Next we remind several peculiarities in the behavior of the simple pendulum which

are essential for the problem of large-amplitude oscillations. The solution φ(t) to the

differential equation of a conservative simple pendulum

φ̈+ ω2
0 sinφ = 0 (ω0 =

√
g/l) (2)

can be expressed in elementary functions in the limiting case of oscillations with infinitely

small amplitude: when sinφ ≈ φ, equation (2) becomes linear and describes a simple

harmonic motion with the frequency ω0. Oscillations with large amplitudes, as well

as revolutions in a full circle, require special functions (elliptic functions) for their

description. However, the general character of variation with the time of the mechanical

state of a nonlinear system such as the pendulum can be graphically demonstrated by

trajectories in the phase plane (φ, φ̇), i.e., the graphs which plot the angular velocity

φ̇ versus the angular displacement φ. The family of these trajectories, corresponding

to different values of energy, constitutes the phase portrait of the system. The phase

portrait tells us a great deal about the possible motions of a nonlinear system.

We can construct a phase portrait for a conservative system (e.g., for the pendulum)

without explicitly solving the differential equation (2) of motion of the system. The

equations for phase trajectories follow directly from the law of energy conservation. In

the absence of friction, the total energy E of the pendulum, i.e., the sum of its kinetic

energy, Ekin(φ̇) = 1
2
mv2 = 1

2
ml2φ̇2, and potential energy, Epot(φ) = mgl(1 − cosφ),

remains constant during the motion:

1

2
ml2φ̇2 +mgl(1− cosφ) = E. (3)

This equation gives the relation between φ̇ and φ, and therefore it is the equation of

the phase trajectory which corresponds to a definite value E of total energy. It is

convenient to express equation (3) in a slightly different form. We define the quantity

Em = 2ml2ω2
0 = 2mgl that has the physical sense of the kinetic energy of the pendulum

rotating with the angular velocity 2ω0, or, which is the same, of the potential energy of

the inverted pendulum. Then we rewrite equation (3):

φ̇2

ω2
0

+ 2(1− cosφ) =
4E

Em

. (4)

Several phase trajectories are shown in figure 1 under the graph of Epot(φ).

If the total energy E of the pendulum is less than the height of the potential barrier

in figure 1 (E < 2mgl = Em), the pendulum swings between the extreme deflections φm

and −φm. If the amplitude is small (φm ≪ π/2), the oscillations are nearly sinusoidal,

and the phase trajectory is nearly an ellipse. The greater the total energy E, the greater

the divergence of the phase trajectory from an ellipse and the greater the difference of

the motion from simple harmonic. At large amplitudes the pendulum spends more time

near the extreme (turning) points where its direction of motion reverses. The period

of motion grows with the amplitude. If the total energy E of the pendulum is greater
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Figure 1. Potential well of the simple pendulum and the phase portrait in the

absence of friction. Closed phase trajectories that enclose the origin of the phase plane

correspond to oscillations with different amplitudes. Trajectories passing over and

below separatrix correspond to counterclockwise and clockwise revolutions respectively.

than the height of the potential barrier (E > 2mgl = Em), the pendulum occurs in

the inverted position with non-zero angular velocity. This means that it makes full

revolutions.

3. The Limiting Motion

The phase trajectory corresponding to a total energy E which is equal to the maximal

possible potential energy, namely Epot(π) = Em, is of special interest. It separates the

central region of the phase plane which is occupied by the closed phase trajectories

of oscillations from the outer region, occupied by the phase trajectories of rotations.

This boundary is called the separatrix. The separatrix divides the phase plane of a

conservative pendulum into regions which correspond to different types of motion. The

equation of the separatrix follows from equation (3) by setting E = 2mgl, or from

equation (4) by setting E = Em = 2ml2ω2
0:

φ̇ = ±2ω0 cos(φ/2). (5)

When the pendulum with the energy E = 2mgl approaches the inverted position

at φ = π or φ = −π, its velocity tends to zero, becoming zero at φ = ±π. This state is

represented in the phase plane by the saddle points (π, 0) and (−π, 0) where the upper

and lower branches of the separatrix (equation (5)) meet on the φ-axis. Both these

points represent the same mechanical state of the system, namely the state in which the

pendulum is at rest in the unstable inverted position. The slightest initial displacement

of the pendulum from this point to one side or the other results in its swinging with an

amplitude which almost equals π, and the slightest initial push causes rotational motion
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of the pendulum in a full circle. Executing such swinging or rotation, the pendulum

spends an extended time in the vicinity of the inverted position.

For the case of motion with the energy E = Em = 2mgl (motion along the

separatrix) there exists an analytical solution (in elementary functions) for the angle

of deflection φ(t) and for the angular velocity φ̇(t). Indeed, integration of equation (5)

for the positive sign at the initial condition φ(0) = 0 yields:

φ(t) = π − 4 arctan(e−ω0t). (6)

This solution describes a counterclockwise motion beginning at t = −∞ from

φ = −π. At t = 0 the pendulum passes through the bottom of its circular path, and

continues its motion until t = +∞, asymptotically approaching φ = +π. Differentiating

φ(t) given by equation (6) with respect to time t, we find the following time dependence

of the angular velocity φ̇(t) for the limiting motion of the pendulum:

φ̇(t) =
2ω0

cosh(ω0t)
=

4ω0

eω0t + e−ω0t
. (7)

The graphs of φ(t) and φ̇(t) for the limiting motion are shown in figure 2. The

graph of φ̇(t) has the form of an isolated impulse. In equation (7) the time origin t = 0

is the instant at which the pendulum passes through the equilibrium position with the

angular velocity φ̇ = 2ω0. This moment corresponds to the peak value of the impulse.

For time t = ±T0/2 on either side of the peak equation (7) gives the angular velocity

of only ±0.17ω0. Therefore the period T0 = 2π/ω0 of small natural oscillations gives

an estimate for the duration of the impulse on the velocity graph, that is, for the time

needed for the pendulum to execute almost all of its circular path, from the vicinity of

the inverted position through the lowest point and back.

ϕ
.

ϕ,

ϕ (  )t
. ϕ (  )t

t0

π

π−

Figure 2. Time dependent graphs of φ(t) and φ̇(t) for the limiting motion along the

separatrix from φ = −π to φ = π in the absence of friction. The time origin t = 0

corresponds to the moment, at which the pendulum crosses the lower equilibrium

position φ = 0.
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4. Oscillations with amplitudes approaching 180◦

If the pendulum is released with zero initial velocity near the inverted position (say,

at initial angle about 179◦), it slowly starts moving toward the down position with a

small initial acceleration, because the torque of gravity, being proportional to the sine of

deviation from the inverted position, is small. After the pendulum gains some speed, it

rapidly makes almost a full circular path through the lower equilibrium position. When

the pendulum occurs on the opposite side of the inverted position, its motion gradually

slows down as it climbs up along the slope of the potential barrier to its summit. In

the absence of friction the pendulum stops when its angular distance to the vertical

becomes equal to the initial deviation. From this turning point all the motion repeats

in the opposite direction, and after a period the pendulum occurs at the initial point

with zero velocity.

A computer simulation of motion of the rigid planar pendulum developed by the

author can be found on the web [8]. The simulation program (applet) runs directly

in any web browser with Java runtime environment (JRE) installed. To observe the

oscillations discussed in this section, we should switch off the viscous friction (using

the corresponding check-box on the “parameters” panel), and choose appropriate initial

conditions (initial angle about 179◦, initial velocity zero). The program allows the

user to plot the time dependencies of φ(t) and φ̇(t), and to draw the phase trajectory

simultaneously with the visualization of oscillations.

Graphs of φ(t) and φ̇(t) for oscillations with amplitudes 179.90◦ and 179.99◦ in the

absence of friction are shown in figure 3.
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Figure 3. Graphs of φ(t) and φ̇(t) for oscillations with the amplitude 179.90◦ and

179.99◦ in the absence of friction, obtained in the simulation experiment.

Comparing these graphs, we can see that for the most part of the angular excursion
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from −π to π these graphs for amplitudes 179.90◦ and 179.99◦ are nearly identical. We

guess that for these stages of motion deflection angle φ(t) and angular velocity φ̇(t)

are characterized by almost the same time dependence as for the limiting motion along

the separatrix, shown in figure 2. This time dependence is described (in elementary

functions) by the simple expression (6). Hence the duration of this stage of oscillation

for all these cases of large amplitudes approaching 180◦ is about T0 (the period of

small oscillations) and can be calculated with high precision with the help of the same

expression (6). The duration of the remaining stage, during which the pendulum lingers

near the inverted position, depends critically on the amplitude φm. This is clearly seen

from comparison of the upper and lower panels of figure 3. This duration increases

indefinitely as φm → 180◦. In order to calculate the duration of this stage for certain

large amplitudes, we can make use of the linearized differential equation, applicable for

small deviations from the inverted position. We will do this on page 8.

The closed phase trajectory of oscillatory motion with a large amplitude φm is shown

in figure 4. Most part of the phase trajectory almost coincides with the separatrix. The

representing point goes around the whole closed curve during one period T of oscillation.

Next we consider one quarter of this curve which starts in the phase plane at the initial

ϕ
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Figure 4. The phase trajectory of oscillatory motion with a large amplitude φm (a)

and its portion (increased) that corresponds to the motion of the pendulum in the

vicinity of the inverted position (b).

point of maximal deflection φ = φm and initial velocity φ̇(t) = 0, and ends at the point

φ = 0 (marked as t = T/4 in figure 4, a). To calculate this time t = T/4, we choose

on this curve an arbitrary point φ = φc not far from the inverted position φ = π (see

figure 4, b), which divides the curve into two parts. The first part between φ = φm and

φ = φc lies in the vicinity of the inverted position, so that duration t1 of motion along

this part can be calculated with the help of a linearized differential equation of motion

(see below). The second part between φ = φc and φ = 0 is almost indistinguishable

from the separatrix, so that duration t2 of motion along this part can be immediately
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expressed with the help of equation (6):

ω0t2 = − ln tan
π − φc

4
= − ln tan

αc

4
≈ ln

4

αc

. (8)

Here we introduced the notation αc = π − φc for the angle that the pendulum makes

with the upward vertical line at φ = φc. When φc is close to π, the angle αc is small,

so that in equation (8) we can assume tan(αc/4) ≈ αc/4. Therefore ω0t2 ≈ ln(4/αc).

When considering the motion of the pendulum in the vicinity of the inverted

position, we find it convenient to define the pendulum position (instead of the angle

φ) by the angle α of deflection from the position of unstable equilibrium. This angle

equals π − φ, so that φ = π − α. Substituting angular acceleration φ̈ = −α̈ and

sinφ = sinα in equation (2), we find the differential equation for the pendulum in

terms of α. Since near the inverted position α ≪ 1, we can replace in this equation

sinα by α. Thus we get the following linear differential equation approximately valid

for the pendulum’s motion between φ = φm and φ = φc:

α̈− ω2
0α = 0. (9)

The general solution to this linear equation can be represented as a superposition

of two exponential functions of time t:

α(t) = C1e
ω0t + C2e

−ω0t. (10)

The initial conditions for the motion from φ = φm to φ = φc are α(0) = αm and

α̇(0) = 0. Applying these conditions, we find the constants C1 and C2 in equation (10):

α(t) =
1

2
αm(e

ω0t + e−ω0t) = αm coshω0t. (11)

To find the duration t1 of motion from φ = φm to φ = φc (from α = αm to α = αc), we

substitute in equation (11) α(t1) = αc:

αc =
1

2
αm(e

ω0t1 + e−ω0t1) ≈ 1

2
αme

ω0t1 . (12)

We have omitted the second term in the right-hand side of equation (12). This is

admissible if the arbitrary angle αc (which divides the phase trajectory into two parts)

is chosen to be large compared to αm. From equation (12) we get for t1:

ω0t1 = ln
2αc

αm

. (13)

The desired period of oscillations T is four times greater than the duration t1 + t2
of motion from φ = φm to the lower equilibrium position φ = 0. Adding t1 from

equation (13) and t2 from (8), we finally obtain the following expression for the period

of oscillations with large amplitude φm approaching 180◦:

T = 4(t1 + t2) =
4

ω0

(ln
2αc

αm

+ ln
4

αc

) =
2

π
T0 ln

8

αm

. (14)

(Here αm = π − φm.) We note that both t1 and t2 depend on the value αc of the angle

which we have chosen to divide the trajectory into one part that corresponds to the

motion in the vicinity of the inverted position, and the other that almost merges with
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the separatrix. Nevertheless, this dependence on αc disappears when we add t1 and t2:

the final expression (14) for the period is independent of the arbitrarily chosen value of

αc (provided αm ≪ αc ≪ 1).

The approximation given by expression (14) is more accurate the closer the

amplitude φm to 180◦. The table below illustrates the precision of this simple expression

for oscillations of extremely large amplitudes. The values of T in the middle column

are calculated on the basis of exact formula (1); the right column corresponds to the

approximate expression (14).

Amplitude T/T0 T/T0

φm (αm) (exact value) (approximate)

175.000◦ (5.000◦) 2.87766 2.87639

177.000◦ (3.000◦) 3.20211 3.20160

179.000◦ (1.000◦) 3.90107 3.90099

179.900◦ (0.100◦) 5.36687 5.36687

179.990◦ (0.010◦) 6.83274 6.83274

179.999◦ (0.001◦) 8.29861 8.29861

We note that according to this table one cycle of the pendulum oscillation at large

amplitudes covers several periods of small oscillations. As an assignment for students’

activity, it would be expedient to suggest them to verify the values cited in the table

by direct measurements of the period in a simulation experiment using the software

available on the web [8].

The above described oscillations with extremely large amplitudes occur if the energy

supplied to the pendulum at initial excitation is slightly less than the height of the

potential barrier Em = 2mgl (see figure 1). If the pendulum is excited from the lower

equilibrium position by an initial push, the initial velocity φ̇(0) should be a little less

than 2ω0. If φ̇(0) > 2ω0, the pendulum makes revolutions in a full circle. If φ̇(0) is only

slightly greater than 2ω0, it is also expedient to divide the motion of the pendulum into

two stages. The stage of motion at crossing the inverted position and in a small vicinity

of it can be described with good precision by the linearized equation (9). The remaining

almost closed part of the circular path can be approximated, like in the above analysis

of oscillations, by the known analytical solution for the limiting motion, equation (6).

In this way a simple analytical expression similar to equation (14) for the period of such

non-uniform revolutions can be obtained (see [7]).

5. Another derivation of the expression for the period of large oscillations

In the above derivation of expression (14) we have chosen arbitrarily some small angle αc

for dividing the motion into stages described by different analytical time dependencies.

Another way is to choose for this conventional boundary of the two stages, instead of the

angular position αc, some arbitrary small angular velocity ωc ≪ ω0, which the pendulum
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gains while moving from the turning point αm at which its angular velocity is zero. To

find the duration t3 of this stage occurring in the vicinity of the inverted position, we can

make use of the above obtained solution (11) to the linearized equation (9), according

to which

α̇(t) =
1

2
αmω0(e

ω0t + e−ω0t). (15)

Substituting α̇(t3) = ωc in equation (15) and taking into account that e−ω0t3 ≪ eω0t3 ,

we find

ω0t3 = ln
2ωc

ω0αm

. (16)

The further motion towards the equilibrium position is almost indistinguishable from

the limiting motion. Hence the time dependence of the angular velocity α̇(t) = −φ̇(t)

for this stage can be assumed the same as for the limiting motion, see equation (7).

Therefore for calculating the duration t4 of this stage we can substitute φ̇(t4) = ωc

in (7) and take into account that e−ω0t4 ≪ eω0t4 . This yields

ω0t4 = ln
4ω0

ωc

. (17)

Adding t3 from equation (16) and t4 from (17), we finally obtain the same simple

expression (14) for the period of oscillations with a very large amplitude φm:

T = 4(t3 + t4) =
4

ω0

(ln
2ωc

ω0αm

+ ln
4ω0

ωc

) =
2

π
T0 ln

8

αm

. (18)

Again, the arbitrarily chosen angular velocity ωc (ωc ≪ ω0) which we have used to divide

the motion on different stages vanish from the final expression (18).

6. Concluding remarks

We have considered the old problem of large oscillations of a simple rigid pendulum with

amplitudes close to 180◦ on the basis of an approach in which the cycle of oscillation

is divided into several stages. The major part of the almost closed circular path of

the pendulum in such an oscillation is approximated with a good precision by the

limiting motion, for which there exists an analytic solution in elementary functions.

The remaining small parts of the path, occurring in the vicinity of the inverted position,

are described on the basis of the linearized equation, which is valid for the new variable

α = π − φ. The point that divides the path of the pendulum into stages described

by different approximations is chosen to some extent arbitrarily, but this arbitrariness

does not influence the final approximate expression for the period of oscillations. The

final analytical formula (14) is very simple and gives for the period of large oscillations

rather accurate values that coincide with high precision with the values given by the

exact expression (1) in terms of the complete elliptic integral of the first kind. More

importantly, the approach to the problem described in this letter provides additional

physical insight into the dynamics of nonlinear systems.
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