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Abstract

Several possibilities of launching a space vehicle from the orbital station are con-
sidered and compared. Orbital maneuvers discussed in the paper can be useful
in designing a trajectory for a specific space mission. The relative motion of or-
biting bodies is investigated on examples of spacecraft rendezvous with the space
station that stays in a circular orbit around the Earth. An elementary approach is
illustrated by an accompanying simulation computer program and supported by a
mathematical treatment based on fundamental laws of physics and conservation
laws. Material is appropriate for engineers and other personnel involved in space
exploration, undergraduate and graduate students studying classical physics and
orbital mechanics.

Keywords: Keplerian orbits, space navigation, impulsive maneuvers, Hohmann’s
transitions, soft docking.

1. Introduction: Designing Space Flights and Orbital Maneuvers

One of the first problems that designers of space missions faced was figuring
out how to go from one orbit to another. Many important problems in astrodynam-
ics are associated with modifying the orbit of a satellite or a spacecraft in order
to produce a particular trajectory for an intended space mission. The orbit can be
modified by applying a brief impulse to the craft. In particular, the velocity of the
craft can be changed by the thrust of a rocket engine that is so oriented and of such
duration as to produce the desired result. The maneuver should be executed at a
proper instant by the astronauts of the spacecraft or by a system of remote control.

In unusual conditions of the orbital flight, navigation is quite different from
what we are used to on the Earth’s surface (or even in the air or under the water),
and our intuition fails us. The orbital maneuvers are not as simple as driving a
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car or a motor boat from one point to another. Even flying a spacecraft is very
different than flying a plane.

If two satellites are brought together but have a (small) nonzero relative ve-
locity, they will drift apart non-rectilinearly. Because a spacecraft is always in the
gravitational field of some central body (such as Earth or the Sun), it has to follow
orbital-motion laws in getting from one place to another. To properly understand
the rendezvous of spacecraft, it is essential to understand the laws that govern the
passive motion in a central field of gravity.

When the rocket engine is very powerful and operates for a very short time
(so short that the spacecraft covers only a very small part of its orbit during the
thrust), the change in the orbital velocity of the spacecraft is essentially instan-
taneous. Most propulsion systems operate for only a short time compared to the
orbital period, so that we can treat the maneuver as an impulsive change in ve-
locity while the position remains unchanged. In this paper it is assumed that the
change in velocity occurs instantly. After such a maneuver the spacecraft contin-
ues its passive orbital motion along a new orbit. The parameters that characterize
the new orbit depend on the initial conditions implied by momentary values of the
radius vector and the velocity vector of the spacecraft at the end of the applied
impulse.

The aims of orbital maneuvers may be varied. For example, we may plan a
transition of the vehicle undocked from the orbital station into a higher circular
orbit in order to remain in it for some time, eventually returning to the station and
soft docking to it. Or we may wish to design a transition of the landing module to
a descending elliptical orbit that grazes the Earth’s surface (the dense strata of the
atmosphere) in order to return to the Earth from the initial circular orbit. We may
want to launch from the orbital station an automatic space probe that will explore
the surface of the planet from a low orbit, or, on the other hand, to send a probe
far from the Earth to investigate the interplanetary space. The orbit of the space
probe must be designed to make possible its return to the station after the mission
is over. Several types of missions require a spacecraft to meet or rendezvous with
another one, meaning one spacecraft must arrive in the same place at the same
time as a second one. A rendezvous also takes place each time a spacecraft brings
crew members or supplies to an orbiting space station.

To plan such space flights, we must solve various problems related to the de-
sign of suitable transitional orbits. We must decide how many instant maneuvers
are necessary to reach the goal. To make each transition of the space vehicle into
a desired orbit, we must calculate beforehand the magnitude and direction of the
required additional velocity (the characteristic velocity), as well as the time at
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which this velocity is to be imparted to the space vehicle. As a rule, the solution
of the problem is not unique.

The complexity of the problem arises from the expectation that we choose
an optimal maneuver from many possibilities. The problem of optimization may
include various requirements and restrictions concerning admissible maneuvers.
For example, there may be a requirement of minimal expenditures of the rocket
fuel, with an additional condition that possible errors in the navigation and control
(in particular, errors in the time of executing the maneuver and inevitable errors
in direction or magnitude of the additional velocity) do not cause inadmissible
deviations of the actual orbit from the predicted (calculated) one.

Various problems related to orbital mechanics and astrodynamics are discussed
in a lot of texts and papers (see, for example, [1]–[7] and references therein).
Many useful references can be found on the web [8]. In this paper we discuss
orbital maneuvers needed for safe landing and for rendezvous of spacecraft. To
keep things simple, we assume that the initial and final orbits are in the same plane.
Such maneuvers are often used to move spacecraft from their initial parking or-
bits to their final mission orbits. It is also assumed in this paper that originally the
active spacecraft is docked with a permanent space station that orbits the Earth
(or some other planet) in a circle. The additional velocity (sometimes called the
characteristic velocity) needed to transfer the spacecraft to a desired new orbit is
imparted to the spacecraft by the on-board rocket engine after undocking. We pay
special attention to the motion of the undocked spacecraft relative to the orbital
station.

The paper comes along with a simulation program [9] that allows to watch the
motion of both the maneuvering craft and the space station on the computer screen
(and simultaneously their relative motion in a separate window) in a time scale
convenient for observation. The simulations reveal many extraordinary features
that are hard to reconcile with common sense and our everyday experience.

The paper is organized as follows. Next section explains how to use the simu-
lation software that accompanies the paper. Basic principles of orbital maneuvers
and examples that illustrate them are described in the body of this paper without
heavy mathematics, on a qualitative level accessible to a wide readership. For
readers who wish to get an idea about the topic under consideration, reading only
the main text will suffice. Those readers who want to delve into the problem can
find a deep quantitative mathematical justification and important details of each
maneuver in the relevant Appendix.
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2. How to Use the Simulation Program

The simulation program “Orbital Maneuvers and Relative Motion” that ac-
companies the paper is a part of the award-winning software package “Planets and
Satellites” available on the web at http://butikov.faculty.ifmo.ru/
(section Downloads). This stand-alone program runs under Windows operating
system after installing on the local machine. It is supplied with a detailed online
Tutorial which describes the possibilities of the simulation program, and explains
how to use it.

In order to use the program for illustrating the maneuvers described in the
paper, one can simply click the item “Examples” in the menu to open the list
of predefined examples. Thus one can avoid calculation of necessary parameters
and initial conditions for executing a desired simulation. We simply choose the
relevant example in the list. A short description of the chosen example appears
below in the text window. When we click “Ok” button, all the values required
for the chosen simulation will be defined automatically. Besides the maneuvers
discussed in the paper, the set of predefined examples illustrates a lot of other
various possible orbital missions.

If you decide to design a space flight on your own, the simulation program will
allow you to verify the correctness of your calculations. With the simulator you
can play the role either of a space pilot or of a distant operator using remote control
to carry out the space flight designed beforehand. The necessary maneuvers of
the spacecraft are executed automatically according to your preloaded program,
or manually by instantly changing the velocity vector of the craft at appropriate
moments in the course of the simulation.

It is assumed that originally the spacecraft is docked at a permanent station
that orbits the earth (or some other planet) in a circle. Both the height of this orbit
and the magnitude of the additional velocity of the spacecraft for each maneu-
ver are to be entered beforehand. This additional velocity (sometimes called the
characteristic velocity) is imparted by the rocket engine to the spacecraft after it
is undocked.

There are two ways, automatic and manual, to control the instant at which
this maneuver takes place. For automatic control, the time for each maneuver
should be entered beforehand (during the design time) by typing the time into
the box “Time of maneuver” of the Input panel, which opens by choosing the
corresponding item in the menu. The time zero corresponds to the instant at which
the simulation starts. One can choose either natural units of time and velocity,
namely, the period of the station in its circular orbit as a time unit, and the circular
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velocity corresponding to this orbit as a unit of additional velocity, or the usual
units (seconds and kilometers per second). After choosing the magnitude of the
additional velocity and indicating the time for the maneuver, we click the button
“Add” in order to include the values into the list of ordered maneuvers. Direction
of the additional velocity for each maneuver depends on which of the options
(“Up,” “Down,” “Forward,” or “Backward”) is chosen in the frame “Direction.”
This direction can be fixed either relative to the local horizon, or relative to the
vector of instantaneous velocity of the spacecraft, depending on the choice of
option in the frame “Orientation.”

In this way we can order as many sequential maneuvers as we like, adding in
sequence the required values of the additional velocity and its direction, as well
as the time the maneuvers start, to the list of ordered maneuvers. We can edit the
list not only by adding new items but also by removing some items (to do so, we
select an item and click the button “Remove”), or by inserting additional items.
To insert an item, we indicate the required additional velocity and the time for
the maneuver in the corresponding boxes, and in the list we select the item before
which we want to insert the new item. We then click the “Insert” button.

When the list is ready, we click the “Ok” button. The simulation program
performs the ordered maneuvers if we click the “Start” button.

We can avoid a preliminary calculation of the time at which each maneuver is
to begin if we use the manual control. Watching the motion of the space station
on the computer screen, we can click one of the four arrow command buttons in
the upper panel of the window in which the motion is displayed. We thereby give
a command to undock the space vehicle from the orbital station and to instantly
add velocity to the vehicle by the thrust of its rockets. In the simulation, this
additional velocity is imparted to the spacecraft just at the moment we click the
corresponding command button. The orientation of the additional velocity ∆v
depends on which of the four arrow buttons we click.

Vector ∆v of the additional velocity lies in the plane of the orbit and can have
one of the four orientations: up, down, forward, or backward. These directions
of ∆v are defined either with respect to the vector v of the instantaneous velocity
of the spacecraft, or with respect to the local vertical line at the point of the ma-
neuver, depending on the option chosen before the maneuver. The magnitude of
the additional velocity is determined by the value which has been entered in the
corresponding box of the panel “Input” before the simulation.

When using the program, we can open an additional window in order to simul-
taneously display the motion of the space vehicle in another frame of reference.
This additional frame is associated with the orbital station. More precisely, this
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frame is fixed to the rotating straight line joining the center of the planet with the
orbital station, so that one of the coordinate axes is always directed along this line.
Since this frame rotates uniformly around the planet together with the orbital sta-
tion, it is a non-inertial frame of reference, in which the orbital station is at rest.
In other words, the relative motion of the space vehicle displayed in this window
shows the motion as seen by the astronauts observing it from the orbital station.

To open the window that displays the relative motion, we click the menu item
“Zoom,” “Relative Motion.” If we like, we can resize it and move around the
screen in the usual way. If the scale chosen automatically by the program is not
satisfactory, we can change it by clicking on the menu items “Rescale,” or “Zoom
in” and “Zoom out.” The item “Rescale” is useful when we have already simulated
the motion but wish to repeat it in a more convenient scale with the same values
of parameters.

Other numerous possibilities of the simulation program are described in the
Manual available online from within the program.

3. Way Back from Space to the Earth

As an example of active maneuvers of a spacecraft staying originally in a
low circular orbit around a planet, we consider the problem of transition of a
landing module to a descending trajectory. For a safe return to the Earth, the
landing module must enter the dense strata of the atmosphere at a very small
angle with the horizon. A steep descend is dangerous because of the rapid heating
of the spacecraft in the atmosphere. The thermal shield of the landing module
must satisfy very stringent demands. For a manned spacecraft, large decelerations
caused by the air drag at a steep descend are inadmissible mainly because of the
dangerous increase in the pseudo weight of the space travelers. All this means that
the planned passive descending trajectory must just graze the upper atmosphere.

Next we shall consider and compare two possible ways to transfer the landing
module into a suitable descending trajectory.

1. After the landing module is undocked from the orbital station, it is given an
additional velocity directed opposite to the initial orbital velocity.

2. The additional velocity of the landing module is directed downward (along
the local vertical line).

In all cases, any additional velocity transfers the space vehicle from the initial
circular orbit to an elliptical orbit. One of the foci of the ellipse is located, in
accordance with Kepler’s first law, at the center of the Earth.
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Figure 1: Descending elliptical trajectory of the landing module after a backward impulse is ap-
plied at point A (left), and the descent of the module as it appears to the astronauts on the orbital
station S (right). The thin dotted line shows a conventional upper boundary of the atmosphere.

In the first case, a brief operation of the rocket engine changes only the mag-
nitude of the orbital velocity, preserving its direction. Therefore, at the point at
which the rocket engine operates (point A in the left panel of Figure 1), the de-
scending semielliptical orbit has a common tangent with the original circular orbit.
This point A is the apogee of the elliptical orbit of the landing module. Its perigee
is located at the opposite end P of the major axis. This axis passes through A and
the center of the Earth E. The remote (from the apogee A) focus of the ellipse is
located at this point E. The second focus of this ellipse is located at point F in
Figure 1.

The additional (characteristic) velocity ∆v must be chosen from the require-
ment that at point P the ellipse must just graze the surface of the planet. Its value
can be calculated from the conservation laws of energy and angular momentum.
Details of the calculation can be found in Appendix I. We present here only the
resulting formula:

∆v = vcirc

(
1−

√
2

1 + r0/R

)
. (1)

Here vcirc =
√

GM/r0 =
√
gR2/r0 is the circular velocity of the space station,

G is the gravitational constant, M is the mass of the planet, g is the acceleration
of free fall on the Earth’s surface, r0 is the radius of the circular orbit, and R is the
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Earth’s radius (more exactly, radius of the Earth together with the atmosphere).
In the case of a low circular orbit, whose height h = r0 − R over the Earth is

small compared to the Earth’s radius (h ≪ R), the exact equation, Eq. (1), can be
replaced by an approximate expression:

∆v ≈ vcirc
h

4R
. (2)

For example, if the height h of the circular orbit equals 0.2R ≈ 1270 km, the
additional velocity ∆v, according to Eq. (2), must be about 5% of the circular
velocity. (The calculation on the basis of Eq. (1) with r = R + h = 1.2R gives a
more exact value of 4.65%).

To observe the simulation of landing, we use the example “Landing by a Back-
ward Impulse” included in the program “Orbital Maneuvers and Relative Motion”
of the software package [9]. The simulation is based on numerical integration of
the equation of motion of the landing module. It shows that the landing module
actually moves along the theoretically predicted ellipse that grazes the surface of
the planet at point P whose angular distance from point A at which the rocket
engine operates equals 180◦ degrees.

The simulation presented in Figure 1 uses another example (next one in the
list of examples), which corresponds to a planet with atmosphere. In this case
the landing ellipse must graze the upper strata of the atmosphere in order the
landing module enter the atmosphere at a very small angle before reaching this
point P of the descending orbit. For this case the angular distance between the
initial point and the point of landing is only approximately 180◦. The simulation
shows that the landing module actually moves along the theoretically predicted
ellipse during almost all first half of revolution around the Earth. But near the
point P its trajectory deviates downward due to the air resistance, which is taken
into account in the simulation. The landing module reaches the ground at point
L. To make the influence of the air drag more noticeable, the height and density
of the atmosphere is exaggerated in the simulation. A conventional boundary
of the atmosphere (whose density reduces exponentially with the height over the
surface) is shown by the dotted line in Figure 1. At the moment of landing the
station passes through point S of its circular orbit.

The right-hand panel of Figure 1 shows the descent of the module in the frame
of reference associated with the orbital station. At first the landing module ac-
tually moves backwards relative to the station, that is, in the direction of the ad-
ditional velocity. However, very soon its relative velocity turns downward and
reverses. Gradually descending, the module moves forward and overtakes the sta-
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tion, leaving it far behind. We note that near the Earth the trajectory steeply bends
towards the surface. This is caused by the increasing air resistance. Due to the
same reason, the point of landing occurs before the module reaches the perigee P
of the ellipse.
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Figure 2: Descending elliptical trajectory of the landing module after given a downward additional
velocity at point B (left), and the descent of the module as it appears to the astronauts on the orbital
station S (right).

If the additional velocity imparted to the space vehicle at point B of the initial
circular orbit (Figure 2) is directed radially (transverse to the orbital velocity),
both the magnitude and direction of the velocity instantly change. Therefore, the
new elliptical orbit intersects the original circular one at this point B. For a soft
landing, the new elliptical trajectory of the descent must also graze the Earth (the
upper atmosphere) at the perigee P of the ellipse. Using the laws of energy and
angular momentum conservation and requiring that the perigee distance rP be
equal to the Earth’s radius R, we can find (see Appendix I) that the necessary
additional velocity ∆v for this method of landing is given by

∆v = vcirc
h

R
. (3)

Here vcirc is the circular velocity for the original orbit, h is its height above the
surface (above the atmosphere), and R is the Earth’s radius (including the atmo-
sphere). Comparing this expression with Eq. (2), we see that for this method of
transition to the landing trajectory from a low circular orbit, the required addi-
tional velocity is approximately four times greater than that for the first method.
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For example, it must equal 20% of the circular velocity, if the height h of the
circular orbit is 0.2R. The angular distance between the starting point B and the
landing point L (see Figure 2) for this method equals 90◦ (a quarter of the rev-
olution), in contrast to the first method, for which the angular distance between
the point of transition from the circular orbit to the descending trajectory and the
landing point is twice as large (half a revolution).

Figure 2 also shows position S of the orbital station at the moment of landing.
We can see that the station is above and some distance behind the landing module
since for the moment of landing the station has not completed a quarter of its
revolution from the initial point B.

The right-hand side of Figure 2 shows the landing trajectory in the frame of
reference associated with the orbital station. At first the astronauts on the sta-
tion see that the landing module really moves downward, in the direction of the
additional velocity imparted by the on-board rocket engine. However, soon the
trajectory bends forward, in the direction of the orbital motion of the station. The
landing module in its way towards the ground moves forward and overtakes the
station, leaving it in its orbital motion far behind.

To observe the corresponding simulation, we can choose “Landing by a Down-
ward Impulse” from the list of examples in the program “Orbital Maneuvers and
Relative Motion” [9].
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Figure 3: Elliptical trajectory of the landing module after acquiring an upward additional velocity
at point B (left), and the trajectory of the module as it appears to the astronauts on the orbital
station S (right).

Strange as it may seem, we can transfer the space vehicle to a landing tra-
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jectory by a transverse impulse directed vertically upward as well as downward
(Figure 3). In this case, starting from the point B of transition to the elliptical
orbit, the landing module first rises higher above the Earth. Only after it passes
through the apogee A of the orbit does it begin to descend toward point P (the
perigee of the orbit), at which it enters the atmosphere. The angular distance
between the starting and the landing points (B and L, respectively) in this case
equals approximately 270◦, that is, about three quarters of a revolution. During
this time, the orbital station covers almost a whole revolution, and at the moment
the vehicle lands at point L, the station S is far beyond the landing point.

The trajectory of the landing module as it is seen by the astronauts in the
orbital station is shown in the right-hand panel of Figure 3. The module first
moves upward, in the direction of the additional velocity, but soon turns backward.
Its relative motion becomes retrograde, and the landing module lags behind the
station. After circling more than a quarter of the globe in the retrograde direction,
the module’s motion reverses direction. The module then descends, approaching
the Earth’s surface tangentially.

For an elliptical orbit that is to graze the Earth, the magnitude of the addi-
tional velocity must be the same for both the downward and upward directions of
the impulse. We can easily see this point either from the laws of the conservation
of energy and angular momentum (the corresponding equations are the same for
both cases, see Appendix I), or from considerations based on the symmetry be-
tween the two cases: for if the goal is to land the module near some point P of
the Earth’s surface (Figure 2), we must make a transition from the initial circular
orbit to an elliptical orbit for which point P is the perigee. The orbits intersect
at two points B and C. The transition is possible either at B (at angular distance
270◦ before the landing point) using an upward impulse, or at a symmetrical point
C (at angular distance 90◦) using a downward impulse of equal magnitude. To
observe the corresponding simulation, we can choose “Soft Landing after an Up-
ward Impulse” from the list of examples in the program “Orbital Maneuvers and
Relative Motion” [9].

The method of descending from a circular orbit with the help of a backward
impulse requires the absolutely minimal amount of rocket fuel. However, this
method is very sensitive to even small variations in the value (and direction) of
the additional velocity. In the ideal situation, if the additional velocity has exactly
backward direction and the required value given by Eq. (1), the point of landing L
is near the perigee P of the ellipse (see Figure 1). During the descent, the landing
module covers about one half of the ellipse (from A to P ) while the station covers
a little less than half its circular orbit. At the moment of landing, the station is
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above and a little behind the module (point S in Figure1).
The sensitivity of this method to variations in the additional velocity means

that if the actual magnitude of the additional velocity is slightly greater than the
required value, the point of landing L moves considerably from the perigee (point
P ) towards the starting point A. And if the velocity ∆v is smaller than required,
the perigee of the elliptical orbit occurs above the dense strata of the atmosphere,
and the space vehicle may stay in the orbit for several loops more. Because there is
considerable air resistance near perigee, the apogee of the orbit gradually descends
after each revolution. The orbit approaches a low circle. Eventually the space
vehicle enters the dense atmosphere and lands. However, it is almost impossible
to predict when and where this landing occurs. To avoid such complications, in
practice of orbital flights the additional velocity that transfers the landing module
to a descending trajectory is usually chosen to have also a downward transverse
component.

4. Transitions between Orbits and Interplanetary Flights

Next we discuss the space maneuvers that can transfer a space vehicle from
one circular orbit to another.

Suppose we need to launch a space vehicle from the orbital station into a cir-
cular orbit whose radius is different from that of the space station. After remaining
in this new orbit for a while, the space vehicle is to return to the orbital station and
dock to it. What maneuvers must be planned to execute this operation? What jet
impulses are required for optimal maneuvers? What characteristic velocities must
the rocket engine provide?

Designing such transitions between different circular orbits can be related also
to interplanetary space journeys. The orbits of the planets are almost circular, and
to a first approximation they lie in the same plane. In a sense, planets are stations
orbiting the sun. Sending a space vehicle from one planetary orbit to another dif-
fers from the problem suggested above only in that the planets (unlike actual sta-
tions) exert a significant gravitational pull on the space vehicle. But since masses
of the planets are small compared to the mass of the sun, the gravitational field of
a planet is effective only in a relatively small sphere centered at the planet (see, for
example, [6]). Outside this sphere of gravitational influence of the planet the mo-
tion of a space vehicle (relative to the heliocentric reference frame) is essentially a
Keplerian motion governed by the sun. In this sense the problem of interplanetary
flights is quite similar to the problem to be discussed here. The only difference is
that in the case of interplanetary flights the additional velocity needed to simulate
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a maneuver on the computer should be treated as the velocity with which the space
vehicle leaves the sphere of gravitational influence rather than the surface of the
planet.

Because fuel is critical for all orbital maneuvers, we look first of all at the
most fuel-efficient method: the so-called Hohmann’s transfer. In 1925 a German
engineer, Walter Hohmann, suggested a certain way to transfer between orbits. It
is amazing that he was thinking about this at those old times, many years before
launching artificial satellites became technically possible. This method uses a
semielliptical transfer orbit tangent to the initial and final orbits (a semielliptic
trajectory that grazes the inner orbit from the outside and the outer orbit from the
inside).
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Figure 4: Semielliptic Hohmann’s transition of a spacecraft to a higher circular orbit with subse-
quent return to the orbital station.

As a particular example, we next consider the voyage of a spacecraft from an
orbital station that moves around a planet in an inner circular orbit of radius r0 to
an outer circular orbit of radius 2r0. After remaining in this new orbit for a while,
the spacecraft returns to the orbital station. To observe the corresponding simula-
tion, we can choose “Flights between Circular Orbits” from the list of examples
in the program “Orbital Maneuvers and Relative Motion” [9].

Figure 4 illustrates the maneuvers. At point P1 the space vehicle is undocked
from the station and the on-board rocket engine imparts to the vehicle an addi-
tional velocity ∆v1 in the direction of the orbital motion. In order to acquire an
apogee of 2r0 for the transitional semielliptic trajectory, the additional velocity
∆v1 must equal 0.1547 vcirc, where vcirc is the orbital velocity of the station. The
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calculation of the required additional velocity ∆v1 on the basis of the laws of con-
servation of the energy and angular momentum is given in the Appendix II. When
the space vehicle reaches the apogee (point A1) of the ellipse, a second tangential
impulse ∆v2 is required to increase the velocity from vA to the certain value vc,
in order to place the space vehicle in the outer circular orbit. For this outer or-
bit, whose radius is twice the radius r0 of the station orbit, the circular velocity
vc equals vcirc/

√
2, because the circular velocity is inversely proportional to the

square root of the orbit’s radius.
An additional velocity of the same magnitude ∆v2 but directed oppositely to

the orbital velocity is required to transfer the space vehicle to a semielliptic tra-
jectory that can bring it back to the station. However, when the orbital station is
to be the target, another important consideration is timing: The station must be in
the right spot in its orbit at just the moment when the space vehicle arrives. There-
fore the instant and the point A2 (see Figure 4) at which the maneuver is carried
out must be chosen properly in order that the space vehicle reach the perigee P2

simultaneously with the station. To calculate a suitable time, we can use Kepler’s
third law (see Appendix II for details).

To equalize the velocity of the space vehicle with the velocity vcirc of the sta-
tion as they both meet at point P2 (see Figure 4), one more rocket impulse (di-
rected opposite to the orbital velocity) is required. It is obvious that now the
required additional velocity has the same magnitude ∆v1 as it does for the very
first maneuver.

The right-hand panel of Figure 4 illustrates the motion of the space vehicle
in the frame of reference associated with the orbital station. At first the vehicle
actually moves forward, in the direction of the additional velocity ∆v1, but very
soon its velocity relative to the station S turns up and then backward (the relative
trajectory makes a small arc near point S). The further motion of the vehicle
relative to the station is retrograde. We note that between points A1 and A2 the
space vehicle covers more than one revolution around the station in its retrograde
relative motion, while in the planetocentric motion between the corresponding
points A1 and A2 (left-hand panel of Figure 4) it covers less than one revolution.

5. Rendezvous in Space: Soft Docking to the Space Station

An orbital station S moves around the Earth in a circular orbit (clockwise in
Figure 5). A spacecraft with crew members and supplies is launched to dock to
the station, but because of an unexpected delay at the launch, the craft moves
into the same circular orbit some distance behind the station. Docking spacecraft
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poses serious challenges not encountered, say, when connecting two aircraft for a
refueling. Like an air travel, space travel works in three dimensions. But unlike
the air travel, there is an additional confusion caused by navigating the craft that
are free-falling in orbit.
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Figure 5: Semielliptic trajectory of a spacecraft needed to reach the orbital station S (left), and
how this trajectory looks in the reference frame of the station S (right).

The process of docking two orbiting spacecraft was the focus of Dr. Aldrin’s
thesis titled “Line-of-Sight Guidance Techniques for Manned Orbital Rendezvous”
submitted to MIT. This thesis brought him among colleagues a nickname “Dr.
Rendezvous”. He was the first PhD in space. The first docking occurred on
Gemini-8, in 1966. Soon thereafter, Dr. Aldrin flew aboard Gemini-12 and was
able to verify his doctoral work with hands-on experience. Astronauts Neil Arm-
strong and Buzz Aldrin remain in history as the first human beings to walk on the
Moon, in 1969.

Let the distance L between the two spacecraft in the same orbit be small com-
pared to the radius r0 of the orbit (L ≪ r0), see Figure 5. Even in this case simply
pointing the active vehicle’s nose at the target and thrusting won’t do the desired
job of the space rendezvous. Dr. Aldrin describes the surprising result of this
maneuver as an orbital paradox: “You’ll end up in a higher orbit, traveling at a
slower speed and watching the second craft fly off into the distance.”

The proper technique requires changing the tracking vehicle’s orbit to allow
the rendezvous target to catch up, and then at the correct moment change to the
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same orbit as the target with no relative motion between the vehicles.
In order that the spacecraft reach the station, say, after one revolution along the

orbit, an additional rocket impulse is required. At first sight it may seem strange,
but to reach the station that moves along the same orbit in front of the spacecraft
and to catch it up, we should brake. But being armed with understanding how
the things work in conditions of an orbital flight, we realize that for the most
fuel-efficient method of the rendezvous, a tangential braking impulse is required,
which must slow down the spacecraft. This backward thrust transfers the craft to
an inner elliptical orbit (see Figure 5) whose apogee A is at the point of thrust,
and perigee at the opposite point P .

Point A is the only common point of the circular orbit of the station and the
elliptical orbit of the spacecraft. Only at this spatial point the rendezvous is possi-
ble. In order the spacecraft arrive at this point simultaneously with the target, the
period T of revolution along the ellipse must just equal the lapse of time needed
for the station to come from point S (which the station passed through at the mo-
ment of thrust) to point A. We must use this condition to calculate the required
value of the additional velocity ∆v1 for the maneuver. This can be done by using
the conservation laws of energy and angular momentum, and Kepler’s third law.
Details of the calculation can be found in Appendix III. According to Eq. (23), af-
ter the backward thrust the spacecraft must have at point A the following velocity
vA:

vA = vcirc

√
2− (T0/T )2/3. (4)

Hence the required backward additional velocity ∆v1 can be easily calculated:

∆v1 = vcirc − vA = vcirc

(
1−

√
2− (T0/T )2/3

)
. (5)

This is an exact expression for ∆v1. It can be simplified for the case of small
distance L between the tracking vehicle and the target. In this case the elliptical
orbit only slightly differs from the circular orbit of the station (see Figure 5), so
that we can present the required period as T = T0 − ∆T and consider ∆T/T0

to be a small parameter (∆T/T0 = L/(2πr0) ≪ 1). This yields for vA and ∆v1
instead of Eqs. (4) and (5) the following approximate expressions:

vA ≈ vcirc

(
1− 1

3

∆T

T0

)
, ∆v1 ≈ vcirc

∆T

3T0

. (6)

To illustrate the rendezvous by a computer simulation (see Figure 5), we
choose for definiteness the angular distance between the spacecraft and the target
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station to be 15◦ (the arc AS in Figure 5), so that ∆T/T0 = L/(2πr0) = 1/24.
The approximate Eq. (6) yields for this case ∆v1 = 0.0139 vcirc, while the ex-
act Eq. (5) yields ∆v1 = 0.0145 vcirc (the value used in the simulation). We see
that after one revolution along the ellipse the spacecraft arrives to the apogee A
simultaneously with the station.

The right-hand panel of Figure 5 shows the trajectory of the tracking spacecraft
in the reference frame associated with the orbital station. At first the craft’s motion
relative to the station is actually retrograde: it moves backward, in the direction of
the additional velocity ∆v1. But very soon the relative velocity turns downward
and then forward. The vehicle gradually overtakes the station, rises to the initial
altitude, and exactly after a revolution occurs just in front of the station. When
the craft reaches the station, one more rocket impulse is required to equalize their
velocities for soft docking. The additional velocity ∆v2 required for this maneuver
must be of the same magnitude as ∆v1, but must be directed oppositely, in the
direction of orbital motion.

If the spacecraft is to approach and dock to the station after two (or n) revolu-
tions along the orbit, the characteristic velocity for the maneuver must be approx-
imately twice (or n times) smaller.

An analytical derivation of the spacecraft trajectory of relative motion in the
vicinity of the orbital station on the basis of linearized differential equations of
motion is presented in Appendix IV.

6. To the Opposite Side of the Orbit and Back

Next we consider one more example of space maneuvers. Imagine we need to
launch a space vehicle from the orbital station into the same circular orbit as that
of the station, but there is to be an angular distance of 180◦ between the vehicle
and the station. In other words, they are to orbit in the same circle but at opposite
ends of its diameter. How can this be done?

In order to transfer the space vehicle to the opposite point of the circular orbit,
an intermediate elliptical orbit with a definite period of revolution (say, 3/2T0 or
3/4T0) is required. To use the first possibility, after undocking from the station, an
additional velocity ∆v1 must be imparted to the space vehicle in the direction of
the orbital motion. Let this be done at some point P1 (left-hand panel of Figure 6).
This velocity ∆v1 appends to the circular velocity vcirc, and the vehicle starts to
move along an outer transitional elliptical orbit 1, which grazes the initial circular
orbit at perigee P1. Its apogee lies at the opposite point A1.
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Figure 6: Transitional geocentric elliptical orbits (outer orbit 1 and inner orbit 2) with periods
3/2T0 and 3/4T0, respectively (left), and the corresponding trajectories of relative motion in the
reference frame associated with the orbital station (right).

The period of revolution along this new orbit depends on its major axis P1A1.
For our purpose, this period must equal 3/2T0, where T0 is the period of the
station. If this is the case, the station covers exactly one and a half of its circular
orbit during one revolution of the space vehicle along its elliptical orbit (curve 1 in
Figure 6). That is, the space vehicle reaches the common point P1 of the two orbits
(circular and elliptical) just at the moment when the station is at the diametrically
opposite point of the circular orbit. At this moment the on-board rocket engine
must be used for the second time in order to quench the excess velocity of the
vehicle. Obviously, the additional velocity of the same magnitude ∆v1 but of the
opposite direction is required. After this both the station and vehicle move in the
same circular orbit being all the time at the opposite ends of its diameter (say,
points S and V in Figure 6).

The right-hand panel of Figure 6 shows the vehicle’s trajectory in its motion
relative to the station (curve 1). Starting to move forward from the station S in the
direction of additional velocity ∆v1, the vehicle very soon turns upward and then
backward. In this frame of reference, almost all its motion from S to final point
V is retrograde. After quenching the excess of velocity over the circular one, the
vehicle remains stationary in this frame at the antipodal point V for an indefinitely
long time.

To calculate the required value of the additional velocity ∆v1 for the maneu-
ver, we can use the conservation laws of energy and angular momentum, and

18



Kepler’s third law. Details of the calculation can be found in Appendix III. If the
period T must equal 3/2T0, velocity at the perigee P1, according to Eq. (23), must
be
√
2− (2/3)2/3 vcirc = 1.1121 vcirc, whence ∆v1 = 0.1121 vcirc.

The second above-mentioned possibility of transition to the opposite side of
the circular orbit requires an inner intermediate elliptical orbit with the period
3/4T0. In the simulation shown in Figure 6 such an orbit is used for the vehicle’s
way back to the station. The backward additional velocity ∆v2 for the maneuver
may be imparted to the vehicle at an arbitrary time moment, say, when it passes
through point A2 (see the left-hand panel of Figure 6). This point becomes the
apogee of the inner transitional orbit (curve 2). After two revolutions along this
orbit the vehicle meets at this point the station, which covers during this time
exactly one and a half revolution along its circular orbit. To equalize velocities
of the vehicle and station, one more thrust of the same magnitude ∆v2 in the
direction of orbital motion is required at point A2. Then soft docking with the
station becomes possible.

We note the extraordinary trajectory of vehicle’s motion relative to the station
(curve 2 on the right-hand panel of Figure 6). The vehicle traces the small loop of
this trajectory while moving near the apogee A2 of its geocentric orbit after one
revolution. The required value of the vehicle’s velocity at point A2 and of addi-
tional velocity ∆v2 for this maneuver can be calculated with the help of Eq. (23)
of Appendix III: the velocity must be equal to

√
2− (4/3)2/3 vcirc = 0.8880 vcirc,

whence ∆v2 = 0.1120 vcirc. We see that both transitions (through outer and in-
ner elliptical orbits) require almost the same magnitude of the additional velocity:
∆v2 ≈ ∆v1.

To observe the corresponding simulation, we can choose “To the Opposite
Side of the Orbit” from the list of examples in the program “Orbital Maneuvers
and Relative Motion” [9].

7. Concluding Remarks

Navigation in space is quite different from what we are used to due to our
experience gained here on the Earth’s surface. Flying a spacecraft have nothing in
common with flying an aircraft. Maneuvers in space are complicated by the free-
falling of orbiting bodies in the central field of the Earth’s gravity. To design a
space mission, we must take into account the fundamental laws of physics as they
apply to orbital motions. The choice of maneuvers suitable for a specific space
flight is restricted by numerous requirements.
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In this paper we presented an elementary approach to selection of possible
optimal orbital maneuvers for several different space flights. In particular, safe
landings of spacecraft, transitions between circular orbits, rendezvous and soft
docking of spacecraft with orbital stations are considered qualitatively. For the
most fuel-efficient maneuvers, the additional velocity must be directed tangen-
tially to the orbital velocity of the vehicle. This condition provides Hohmann’s
transfers along semielliptic transitional trajectories. The required characteristic
velocities for the maneuvers are calculated with the help of conservation laws.
Extraordinary trajectories of the spacecraft relative motion are illustrated by sim-
ulations. The relevant software [9] allows us also to simultaneously observe on
the computer screen the spacecraft motion relative to the Earth and relative to the
orbital station in a convenient time scale.

Appendix I: Trajectories of a Landing Module

For a safe return to the Earth, a landing module should approach the dense
strata of the atmosphere at a very small angle with the horizon. A steep descend
is dangerous because air resistance causes rapid heating of the module and, in the
case of a manned spacecraft, because the astronauts may experience overloads of
large g-factors. Therefore the descending trajectory should just graze the upper
atmosphere.

We calculate here the additional velocity ∆v for two possible impulse maneu-
vers to transfer the landing module from an initial circular orbit into a suitable
descending trajectory: (i) the change in velocity is directed tangentially, antipar-
allel to the orbital velocity, and (ii) the change in velocity is directed radially,
perpendicular to the orbital velocity.

An additional velocity transfers the space vehicle from the initial circular orbit
to an elliptical orbit. One of the foci of the ellipse is located, in accordance with
Kepler’s first law, at the center of the Earth.

In case (i), the short-term impulse thrust of the rocket engine changes only the
magnitude of the orbital velocity, preserving its direction. Therefore, at the point
where the rocket engine operates (point A in Figure 7, a) the descending elliptical
orbit has a common tangent with the original circular orbit. This point A is the
apogee of the elliptical orbit. Its perigee is located at the opposite end P of the
major axis, that passes through A and the center of the Earth E. At this point P
the ellipse should graze the atmosphere.

To calculate the additional velocity ∆v (the characteristic velocity) that is nec-
essary for the transition from the circular orbit to this descending elliptical trajec-
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Figure 7: Possible maneuvers to transfer the landing module from a circular orbit to a trajec-
tory grazing the planet: a – by additional velocity directed against the orbital velocity; b – by a
transverse additional velocity.

tory, we make use of the conservation laws for energy and angular momentum.
We let vA = vcirc − ∆v be the velocity at the apogee A of the elliptical orbit

(here vcirc is the constant velocity in the original circular orbit), and vP be the
velocity at the perigee P , where the ellipse grazes the globe (see Figure 7, a).
Then we write the laws of the conservation of energy and angular momentum for
these points A and P :

v2A
2

− GM

r0
=

v2P
2

− GM

R
; r0vA = RvP . (7)

Here r0 is the radius of the original circular orbit, R is the Earth’s radius (including
the atmosphere), and M is the mass of the Earth. Substituting vP from the second
equation into the first, we obtain:

v2A

(
1− r20

R2

)
=

2GM

r0

(
1− r0

R

)
. (8)

Dividing both parts of Eq. (8) by (1− r0/R), we find the required value vA of the
velocity at the apogee of the elliptical orbit:

vA =

√
2GM

r0

1√
1 + r0/R

= vcirc

√
2

1 + r0/R
. (9)
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We have expressed the first radical in Eq. (9) in terms of the circular velocity vcirc
for the original orbit: vcirc =

√
GM/r0. To find the value of the required change

in velocity, we subtract vA from the circular velocity vcirc. This yields for ∆v
the cited above expression, Eq. (1), which was used for producing the simulation
shown in Figure 1).

In case (ii) the additional velocity imparted to the space vehicle is directed ra-
dially downward, transversely to the orbital velocity, and both the magnitude and
direction of the velocity change. Therefore the new elliptical orbit intersects the
original circular orbit at point B (see Figure 7, b) at which the additional velocity
∆v is imparted to the landing module. For a soft landing, the new elliptical tra-
jectory of descent must also graze the Earth (the upper atmosphere) at the perigee
P of the ellipse.

The laws of conservation of the energy and the angular momentum for points
B and P in this case can be written as follows:

v2circ + (∆v)2

2
− GM

r0
=

v2P
2

− GM

R
; vcircr0 = vPR. (10)

Here the velocity vP at the perigee, as well as the additional velocity ∆v, clearly
have values different from those in Eq. (7). We note that the constant areal (secto-
rial) velocity in Eq. (10) for the descending elliptical trajectory has the same value
as it does for the original circular orbit because an additional radial impulse from
the rocket engine does not change the angular momentum of the landing module.

Substituting vP = vcircr0/R into the first of Eqs. (10) and taking into account
that GM/r0 = v2circ, we get:

(∆v)2 = v2circ

(r0
R

− 1
)2

. (11)

Next, substituting r0 = R + h in this equation, we finally obtain

∆v = ± h

R
vcirc, (12)

the value given by Eq. (3).
The two possible signs in Eq. (12) mean that the additional velocity to the

landing module can be imparted not only downward, but also vertically upward. In
both cases the landing module will be transferred to the trajectory that just grazes
the Earth (see Figure 7, b). It is clear from considerations of symmetry that in
both cases the required additional velocity ∆v has the same magnitude. However,

22



to land on the Earth at the same point P , the upward impulse must be imparted
to the landing module at a different point of the original circular orbit (point C
in Figure 7, b, which is opposite to point B). The angular distance between point
C of the transition to the elliptical orbit and point P of the landing in this case is
270◦ (three quarter of a revolution). The module at first rises higher. Then, only
after it passes through the apogee of its elliptical orbit (point A in Figure 7, b),
does it begin to descend towards the Earth’s surface.

Appendix II: Hohmann’s Transitions and Space Rendezvous

The laws of the conservation of energy and angular momentum, together with
Kepler’s laws of motion in a central Newtonian gravitational field, can be used in
calculating the maneuvers required for a planned space flight between two circular
orbits, and for an approximate calculation of an interplanetary flight.

Next we consider a semielliptic Hohmann’s transition between two circular
orbits. We assume for definiteness that we wish to launch a spacecraft from an
orbital station that moves around a planet in a circular orbit of radius r0 into an
outer circular orbit of radius, say, 2r0. After the spacecraft remains for some
time in this new orbit, it is to return to the station and dock to it. The simulation
experiment for such maneuvers is described in Section 4 (see Figure 4). Here we
present the calculations for the required characteristic velocity and for the time
moments (for the backcount) at which the maneuvers must take place.

The ellipse of the semielliptic transitional trajectory that ensures the most eco-
nomical transition (in expending rocket fuel) grazes both the initial circular orbit
(from the outside) and the final circular orbit (from the inside). Hence the perigee
distance from the center of the planet equals r0, the radius of the initial orbit,
and the apogee distance equals 2r0, the radius of the final circular orbit. To cal-
culate the velocity v0 that the spacecraft must have at perigee of the semielliptic
transitional trajectory, we can use Eq. (9), replacing R in it with rA:

v0 = vcirc

√
2

1 + r0/rA
. (13)

Here rA is the apogee distance of the transitional elliptical orbit from the center of
the planet. To find the required additional velocity ∆v1 for the first maneuver, we
subtract from v0, Eq. (13), the circular velocity vcirc which the spacecraft already
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has after undocking from the station:

∆v1 = vcirc

(√
2

1 + r0/rA
− 1

)
. (14)

Substituting rA = 2r0, we obtain from Eq. (14) ∆v1/vcirc = 2/
√
3− 1 = 0.1547.

The spacecraft comes to the apogee with a velocity vA, whose value is related
to the velocity v0 at the perigee, Eq. (13), through the law of the conservation of
angular momentum (Kepler’s second law):

v0r0 = vArA.

For rA = 2r0 we find, with the help of Eq. (13), vA = v0/2 = 0.577 vcirc. To
transfer the spacecraft from the elliptical orbit to the circular orbit of radius 2r0,
we must increase the velocity at apogee by a second jet impulse. The circular
velocity in a given central Newtonian gravitational field is inversely proportional
to the square root of the radius of the circular orbit. For the orbit of radius 2r0, the
circular velocity equals vcirc/

√
2 = 0.707 vcirc, where vcirc is the circular velocity

for the original orbit of radius r0. Subtracting from this value the velocity vA =
0.577 vcirc, at which the spacecraft reaches the apogee of the elliptical orbit, we
find the additional velocity ∆v2 required for the second maneuver: ∆v2/vcirc =
0.707− 0.577 = 0.130.

Next we calculate the time moments at which these maneuvers take place.
We can do this with the help of Kepler’s third law. The semimajor axis a of the
elliptical orbit equals (r0 + rA)/2 = (3/2)r0. We call the period of revolution
along the original circular orbit (orbit of the station) T0. Then the period for the
elliptical orbit equals (a/r0)3/2 T0 = 1.53/2 T0 = 1.837T0. If we assume t1 = 0
for the first jet impulse, the second jet impulse must be imparted to the spacecraft
after a lapse of one-half the period for the elliptical orbit, that is, at t2 = 0.9186T0.

During the lapse of time t = t2 − t1 taken for the transition, the radius vector
of the station rotates through an angle (2π/T0)t radians. Since the radius vector of
the spacecraft turns during this semielliptic transition through the angle π, at the
instant of the second maneuver the spacecraft lags behind the station by an angle
α = (2π/T0)t− π = 2π(0.9186− 0.5) = 2π · 0.4186 radians.

After the spacecraft remains for a while in its new circular orbit, it is to re-
turn to the orbital station. The optimal return path between the two circular orbits
is again semielliptic. The additional velocity ∆v3 in the jet impulse that trans-
fers the spacecraft from the outer orbit to the semielliptic transitional trajectory
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is directed against the orbital velocity. It is clear from symmetry that in mag-
nitude the additional velocity this time must be exactly the same as for the pre-
ceding transition from the elliptical trajectory to the outer circular orbit, that is,
∆v3 = ∆v2 = 0.130 vcirc. And when the spacecraft reaches the perigee of the
elliptical trajectory where it grazes the inner circular orbit, one more jet impulse
is necessary to quench the excess velocity. This time the additional velocity ∆v4
must have the same magnitude as it does for the first transition from the initial
circular orbit to the semielliptic trajectory: ∆v4 = ∆v1 = 0.1547 vcirc.

However, the return journey of the spacecraft is complicated by the fact that
it is not sufficient to simply transfer the spacecraft to the original inner circular
orbit. The spacecraft must reach the grazing point of the transitional semielliptic
trajectory and the inner circular orbit just at the moment when the orbital station
arrives at this point. To ensure the rendezvous, we must choose a proper moment
for the transition from the outer orbit to the semielliptic return path. What should
the system configuration be at this moment?

During the direct transition to the outer orbit, the spacecraft lagged behind the
station by an angle α = 2π · 0.4186 radians (α is the angle between the radius
vectors of the station and the spacecraft at t = t2). The journey back takes place
during the same lapse of time as does the journey out. Consequently, in order to
meet with the station, the spacecraft must begin its journey back at that moment
when the station is behind the spacecraft by the same angle α.

Letting T be the period of revolution of the spacecraft along the outer circular
orbit, it follows from Kepler’s third law that T = 23/2 T0 = 2.83T0, since the
radius of the outer orbit is 2r0. Calling ∆ω the difference between the angular
velocity 2π/T0 of the station and the angular velocity 2π/T of the spacecraft, we
have that ∆ω = (2π/T0) · 0.646. The angular distance β(t) between the station
and the spacecraft at an arbitrary time t > t2 is determined by the expression:

β(t) = ∆ω(t− t2) + α, (15)

since at t = t2 this angular distance equals α. To calculate the time t3 suitable
for starting the return journey, we require that at the moment the station be behind
the spacecraft by α. Consequently, the angle β given by Eq. (15) should be made
equal to 2πn− α, where n is an integer:

2πn− α = ∆ω(t3 − t2) + α. (16)

Since α = 2π · 0.4186 radians, we find from Eq. (16) that the time t3 − t2
during which we can stay in the outer circular orbit is given by:

t3 − t2 = T0(n− 0.8372)/0.646. (17)
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For n = 1 Eq. (17) gives t3−t2 = 0.252T0. During this interval the spacecraft
covers only a small portion of the outer orbit. And so if the spacecraft is to remain
longer, we let n = 2 in Eq. (17) to find that t3 − t2 = 1.7987T0. The period of
revolution for the outer circular orbit equals 23/2 T0 = 2.83T0, and so with n = 2
the spacecraft covers a considerable part of the orbit. If we are satisfied with this
duration (otherwise we can take n = 3 or more, say, n = 4), the third maneuver
must be performed at t3 = t2 + 1.7987T0 = 2.7174T0. Adding the duration
0.9186T0 of motion along the semielliptic trajectory, we find the moment t4 at
which the rendezvous of the spacecraft with the station occurs: t4 = 3.636T0.
At this moment the fourth jet impulse of a magnitude ∆v4 = ∆v1 = 0.1547 vcirc
must be imparted to the spacecraft in order to equalize its velocity with the orbital
velocity of the station.

The above discussion illustrates how space maneuvers are calculated using
Kepler’s laws and the laws of conservation of energy and angular momentum.
These calculations can be tested by using the simulation programs [9]. Figure 4
described in Section 4 is obtained by such a simulation. It illustrates the particular
maneuvers calculated above.

Appendix III: Period of Revolution along an Elliptical Orbit

For some problems of designing a space flight, the crucial issue is the period of
revolution of the spacecraft along a transitional elliptical orbit. Next we calculate
the additional tangential velocity that must be imparted to the space probe after its
undocking from the station in order to transfer the craft to an elliptical orbit with
the required period of revolution.

We can express this period for the elliptical orbit through the length of its
major axis with the help of Kepler’s third law. Therefore first of all we should
find the major axis for a given value of the additional velocity imparted to the
spacecraft. Writing down the conservation laws of energy and angular momentum
for the apogee and perigee of the elliptical orbit (like the orbit shown in Figure 7, a,
but with the perigee P not necessarily on the surface), we obtain a relationship
between velocity vA at the apogee and distance rP towards the perigee. This
relationship is just given by Eq. (8), if we replace R in it with arbitrary distance
rP to the perigee:

v2A

(
1− r20

r2P

)
=

2GM

r0

(
1− r0

rP

)
. (18)

We can find the desired distance from the center of the planet to the perigee,
rP , by solving this quadratic equation. There is no need in reducing it to canonical
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form and using the standard formulas for the roots. Expressing the difference of
squares in the left-hand side of the equation as the product of the corresponding
sum and difference, we see at once that one of the roots is rP = r0. This root
corresponds essentially to the initial point (to apogee A). This irrelevant root
appears because one of the conditions used for obtaining the equation, namely
that the velocity vector be orthogonal to the radius vector, is satisfied also for the
initial point (as well as for the perigee).

In order to find the second root, the root that corresponds to the perigee, we
divide both sides of Eq. (18) by (1 − r0/rP ) and express in it 2GM/r0 through
the circular velocity (GM/r0 = v2circ) for the initial point A (see Figure 7, a). This
yields for the distance rP to the perigee of the orbit:

rP =
r0

2(vcirc/v0)2 − 1
. (19)

This expression is convenient for determination of parameters of the elliptical
orbit in terms of the initial distance r0 and the initial transverse velocity v0.

For the semimajor axis a of the elliptical orbit Eq. (19) yields the following
expression:

a =
1

2
(r0 + rP ) =

r0
2

1

1− v20/(2v
2
circ)

. (20)

If the initial velocity equals the circular velocity, that is, if v0 = vcirc, Eq. (20)
gives a = r0, since the ellipse becomes a circle, and the semimajor axis coin-
cides with the radius of the orbit. If v0 →

√
2vcirc, that is, if the initial velocity

approaches the escape velocity, Eq. (20) gives a → ∞: the ellipse is elongated
without limit. If v0 → 0, equation (20) gives a → r0/2: as the horizontal initial
velocity becomes smaller and smaller, the elliptical orbit shrinks and degenerates
into a straight segment connecting the initial point and the center of force. The
foci of this degenerate, flattened ellipse are at the opposite ends of the segment.

Using Eq. (20), we can express the square of the initial velocity v0 of the
spacecraft at the common point of the two orbits in terms of the semimajor axis a:

v20 = v2circ

(
2− r0

a

)
. (21)

Next we can express in Eq. (21) the ratio r0/a in terms of the desired ratio of
the period T0 of the station to the period T of the spacecraft in its elliptical orbit
with the semimajor axis a. We do this with the help of Kepler’s third law:

r0
a

=

(
T0

T

)2/3

. (22)
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Hence, to have a desired period T of revolution along a new elliptical orbit after
undocking at point A (see Figure 7, a), velocity of the spacecraft must be changed
by a rocket impulse to the following value v0:

v0 = vcirc

√
2− (T0/T )2/3. (23)

Appendix IV: Approximate Differential Equations for the Relative Motion

Linearized differential equations for the relative motion of orbiting bodies are
derived in [10]. The non-inertial frame of reference is used whose origin lies in the
station. The z-axis of this frame points perpendicularly to the plane of the orbit;
the x-axis lies in the plane of the orbit and extends radially outward, away from the
center of the Earth; and the y-axis is parallel to the orbital velocity of the station,
vcirc. This frame rotates about z-axis with the angular velocity Ω = 2π/T0, where
T0 is the period of revolution of the station along its circular orbit.

The approximate equations, Eqs. (5) in [10], valid for small spatial distances
between the spacecraft and the station (much smaller than the linear dimensions
of the orbit), are as follows:

ẍ = 3Ω2x+ 2Ω ẏ,

ÿ = −2Ω ẋ, (24)
z̈ = −Ω2 z.

Here x, y, and z are the coordinates that determine the position of the space-
craft relative to the station, and ẋ, ẏ, and ż are the components of the relative
velocity. Next we solve these equations for the situation described in Section 5:
the spacecraft initially is in the same circular orbit with the station, but behind it
through a small distance L. Assuming t = 0 at the moment of the thrust, we have
x(0) = 0, y(0) = −L, z(0) = 0. (see Figure 8). To reach the station (which stays
at the origin), the craft at t = 0 gets the initial velocity ∆v = L/(3T0) = LΩ/6π
relative to the station, directed against the orbital velocity: ẋ(0) = 0, ẏ = −∆v,
and ż = 0.

For these initial conditions, the particular solution to the system of the lin-
earized equations of motion, Eqs. (24), can be written as follows:

x(t) =
L

3π
(cosΩt− 1),

y(t) =
L

6π
(3Ωt− 4 sinΩt)− L, (25)

z(t) = 0.
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Figure 8: Trajectory of the docking spacecraft relative to the orbital station.

We can treat this solution as a periodic motion (with the period T0 = 2π/Ω)
of the spacecraft along the ellipse

x(t) =
L

3π
(cosΩt− 1), y(t) = −2L

3π
sinΩt, (26)

whose semiaxes are L/(3π) and 2L/(3π) respectively, with simultaneous uniform
motion of the ellipse in y-direction with the velocity LΩ/2π = L/T0. During one
period T0 the ellipse displaces in y-direction (along the orbit) through distance L.

The trajectory given by Eqs. (26) for the time interval 0 < t < T0 is shown in
Figure 8. The relative motion of the spacecraft starts at point A, located through
distance L behind the orbital station S, and after the lapse of time T0 = 2π/Ω ends
at the origin: the craft approaches the station S. We can compare this approximate
curve with the exact trajectory of relative motion shown in the right-hand panel of
Figure 5, which is produced by a computer simulation.
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