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Preface

The educational software package PLANETS AND SATELLITES is intended to help students learn
and understand the fundamental concepts and laws of physics as they apply to the fascinating world
of the motions of natural and artificial celestial bodies. The package includes a detailed manual
and several highly interactive computer programs presenting a set of exciting computer-simulated
experiments. These experiments enable students to investigate concepts and phenomena that are
difficult or impossible to study in a conventional laboratory.

PLANETS AND SATELLITES is developed as an exploration-oriented complement to various
physics courses. It can be helpful to a wide range of students, from those in introductory physics
to those in advanced courses. With this software and the manual, the students can learn the basic
principles and concepts of classical dynamics, and the application of these principles and concepts
to the motions of various celestial bodies—stars, planets, natural and artificial satellites, manned
and automatic space vehicles.

PLANETS AND SATELLITES allows the students to construct and investigate a model of the
solar system, or to create an imaginary planetary system on their own—complete with the star,
planets, moons, comets, asteroids, and satellites, and to explore their orbital motion governed by
the gravitational forces. In this wonderful space laboratory phenomena are observed in their purest
form, without the complications of friction and air resistance that are inevitable in an ordinary
earth laboratory. The simulations bring to life many abstract concepts of classical dynamics.

Interactive work with PLANETS AND SATELLITES helps students understand phenomena
better. Students can work at a pace they can enjoy, varying parameters of the simulated systems
and repeating several times the most interesting experiments. In some of the programs, students
have an opportunity to perform interesting mini-research physics projects on their own.

Computer simulations in PLANETS AND SATELLITES enable students to see clearly how
the systems that obey simple and precise physical laws behave, sometimes in unexpected and even
irregular, chaotic ways.

Although designed as a desk-top laboratory for individual interactive work, the software also
provides the instructor with powerful demonstration tools to accompany lectures in mechanics
and general physics. The structure of the programs and the manual allows students to study the
subject at different levels of difficulty, depending on the time available and on the mathematical
complexity of the course.

Part I (Chapters 1 – 5) of the Manual contains a description of the programs and their pos-
sibilities, and explains how the programs are operated. It suggests experiments that demonstrate
typical examples of behavior of the simulated systems. The underlying concepts and physical laws
are discussed at an introductory level, without much mathematics. This chapter is aimed at build-
ing physical intuition. Students who are not going to study the subject thoroughly may restrict
themselves only to this part. However, to answer some of the suggested questions and to solve the
difficult problems, students may also need to read the following parts of the Manual.

Chapter 6 of Part II presents a more detailed though rather elementary description of the
fundamental concepts and the laws of physics underlying the simulated phenomena. Quantitative,
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mathematical formulation of the physical laws and their consequences provides a means to predict
and to explain results of the simulation experiments, and to calculate the parameters that must
be entered in order to obtain the predicted results.

Chapter 7 of Part II is much more sophisticated and is intended for an in-depth study of the
subject. This highly mathematical chapter gives a serious theoretical background for a computer-
aided investigation of classical mechanics and space dynamics.

The author is grateful to the staff of Physics Academic Software, especially to the Editor,
Professor John S. Risley, and to the Associate Editor, Mrs. Margaret Gjertsen, for their generous
helpful assistance. I owe also debts of gratitude to numerous highly qualified and benevolent
colleagues in different universities in the United States who reviewed and criticized an early version
of PLANETS AND SATELLITES. Their comments and valuable suggestions greatly helped me
improve the software. I am especially grateful to Dr. Robert Brehme of Wake Forest University
for the very careful editing the manuscript of the manual and helpful pedagogical advice.

Eugene Butikov
St. Petersburg State University, Russia
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Before You Begin

Unpacking

Your package for PLANETS AND SATELLITES contains the following:

• The User’s Manual (this book)

• One set of diskettes labelled Original Copy

• Labels imprinted Archival Copy for your backup copy

• One registration card

The User’s Manual contains information on how to operate the programs and how to execute
commands. It also gives a description of the simulation programs with a summary of the theory
of the simulated phenomena and suggests experiments to be done. A preliminary study of the
manual is strongly recommended.

System Requirements

Your computer system and hardware configuration should be a PC computer running under MS
Windows 95/98/ME or Windows NT/2000/XP operating system, with color monitor (a high res-
olution mode 800× 600 or higher). Printer is optional.

Licensed Copies

As a registered owner of a single-copy license, you may make one archival or backup copy of the
program. Affix to the archival diskettes the labels imprinted Archival Copy that are provided in
the PLANETS AND SATELLITES package.

The program may not be used on more than one computer at a time. You may obtain a
multiple-copy license from Physics Academic Software. Each multiple-copy license authorizes you
to use up to ten copies of the program. An order form for the license is in the back of this manual.

Each authorized copy may be loaded onto one computer system. The program may be loaded
on a network computer system, but one authorized copy is required for each computer operating
the program simultaneously.
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Starting Up

To start PLANETS AND SATELLITES:

• Insert diskette # 1 into your disk drive

• From within Windows, run the Setup program (file a:\setup.exe)

• Choose Planets and Satellites from the corresponding program group

List of the Programs

• Tutorial

• Kepler’s Laws

– Kepler’s First Law

– Kepler’s Second Law

– Kepler’s Third Law

– Hodograph of the Velocity Vector

• Missiles and Satellites

• Active Maneuvers in Space Orbits

• Precession of an Equatorial Orbit

• Two-Body and Many-Body Systems

– Double Star

– Planet with a Satellite

– Double Star with a Planet

– Planetary System

8



How to Operate the Programs

The program PLANETS AND SATELLITES is to be used with Microsoft Windows operating
system. Its graphical user interface makes all control functions very simple. A high resolution
mode (800×600 or higher) is recommended. The motion of simulated physical systems is displayed
on the computer screen in windows whose positions and dimensions can be customized in a usual
manner, e.g., by dragging with the mouse. Below is a brief overview of the basic control functions
carried out with the help of the command buttons and menu items.

• Menu Bar at the top of each window displays the commands used to operate the program.

• Command Buttons under the menu bar provide quick access to several commonly used
commands. You click a command button once to carry out the action represented by that
button.

• Sliders with the labels “Speed Up” and “Slow Down” allow you to vary the speed of ani-
mation by changing the time scale in which the motion is simulated.

Command Buttons common to most of the programs execute the following actions:

• Start, Pause, Go – starts the simulation, makes a pause in the simulation, continues the
interrupted simulation;

• Restart – restores the initial conditions and repeats the simulation from the beginning;

• Erase – (in many-body systems) clears the window (erases all traces) and continues the
simulation.

Menu items common to all the programs carry out the following functions:

• File:

– Exit – closes all windows and terminates the program;

– Print – opens the panel to make the printer settings;

• Input – offers to choose a parameter for input or opens the panel for entering several pa-
rameters of the simulated system (and the initial conditions for the simulation);

• Options:

– Dark Sky – displays the simulated system on the black background if the item is
checked (recommended), and on the white background otherwise;

– Stars on the Sky – shows the stars if the item is checked;
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– Predicted Curve – shows the theoretically calculated orbit (the osculating orbit for
a perturbed motion) before the simulation (and when the command button “Pause” is
clicked) if the item is checked;

– Bright Head – shows the moving body (satellite, planet) as a bright circle if the item
is checked, and as a colored circle otherwise;

– Traces – draws the trajectories of the moving bodies (satellites, planets) if the item is
checked;

– Thick Curves – shows the traces by thick lines if the item is checked;

– Time Marks – fixes the positions of the moving bodies on the screen after certain
equal time intervals if the item is checked;

• Examples – offers a list of examples to choose from or opens the panel with a set of examples
provided;

• Zoom – opens another window with a larger (“Zoom In”) or smaller (“Zoom Out”) image of
the system, or opens an additional window to display the system in another reference frame;

• Close (in additional windows) – closes the window and returns to the main window.

Other controls specific for separate programs are described in the corresponding sections of the
Manual. For more information on controls, search “How To . . . ” under the menu “Help” from
within the programs.
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Introduction

Numerical and Analytical Methods

The motions of the planets as they slowly travel across the sky have long fascinated mankind—at
least since the beginning of recorded history. Experimental investigation of the motion of celestial
bodies is the subject of astrometry, a branch of astronomy concerned with the measurements of
positions of celestial bodies. Astronomy is older than physics. One can even argue that physics
as a serious science began when very early astronomers discovered an amazing simplicity in the
motions of the planets. The later explanation of this simplicity is the origin of modern physical
science. The empirical discovery of laws of planetary motion by Johannes Kepler around 1600, and
the dynamical explanation of these laws by Isaac Newton around 1685 form a remarkable chapter
in the history of science. It was an astonishing leap in the understanding of Nature made by giant
intellects.

During the more than three centuries since Newton, very convincing observational support for
the laws of classical Newtonian mechanics is found in the motions of various celestial bodies—
natural and artificial satellites of planets, asteroids and major planets of the solar system, comets,
multiple star systems, and galaxies. In this wonderful space laboratory phenomena are observed in
their purest form, that is, without the complication of friction and air resistance that are inevitable
in an ordinary earth laboratory.

The role of experiment in celestial mechanics is played by observation. Only during the last
several decades, with the construction and launching of satellites and spacecraft, has celestial
mechanics become an experimental science. Artificial satellites orbiting the earth and other planets,
and scientific space stations exploring the outer regions of our solar system are familiar facts of
contemporary life.

The theoretical background of celestial mechanics and of its modern, developing branch—space
dynamics, which is the study of the motion of artificial celestial bodies—is given by Newton’s law
of universal gravitation and by Newton’s laws of motion. These laws of motion are the basis of
classical dynamics.

The differential equations of motion describing some of the physical systems simulated in this
program have analytic solutions. These solutions occur for the motion of a body under the grav-
itational pull of another body whose mass is much greater. The motion of a planet around the
sun, or a satellite around the earth give examples of such a single-body problem. Exact analytic
solutions exist also for the motion of two celestial bodies of comparable masses attracted by their
mutual gravitational force. Theoretical investigation of this motion is referred to as the two-body
problem. Mathematically the two-body problem may be reduced to the problem of a single body
which moves in the gravitational field of the other body, considered fixed at the center of the field.

This gravitational field is an example of a central field known generally as a Newtonian or
Coulomb field. Such fields have the property that the force on a point-body in the field is inversely
proportional to the square of its distance from the center of the field. This kind of dependence on
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NUMERICAL AND ANALYTICAL METHODS 12

distance (inverse-square decrease) is characteristic of the electrostatic interaction between small
charged bodies (“point charges”), described by Coulomb’s law, as well as of the gravitational
attraction of small massive bodies (“point masses”), described by Newton’s law of gravitation.

The universal character of the inverse-square diminution with distance expressed by Newton’s
law of gravitation and by Coulomb’s law of electrostatic interaction is probably related with the
most general geometric properties of our three-dimensional physical space, in which the surface
area of a sphere is proportional to the square of its radius. Apparently there must exist a very
convincing reason for the fact that the common inverse-square law is valid for the fundamental
forces acting in physical systems so immensely different in their sizes as the hydrogen atom and
the gravitating masses of the universe.

It is very important to this study that the inverse-square dependence of the gravitational force
on distance is valid not only for point masses, that is, for bodies separated from one another by
distances that are much greater than the linear dimensions of the bodies, but also for any bodies
whose masses are distributed with spherical symmetry, regardless of the distance between them.
The force of attraction in this case is also determined by the same simple formula of Newton’s
law of universal gravitation provided we substitute therein the geometric center-to-center distance
between the bodies. In other words, in applying the gravitational interaction between spherically
symmetric bodies, we can consider the mass of each body to be concentrated at its geometric center.
This mathematical fact, for which Isaac Newton gave the first proof, is extremely important in the
case of stars and planets, which are for most practical applications spherically symmetric.

Therefore the solution to Kepler’s problem, that is, the problem of the motion of a mass point
under the action of a central force with the inverse-square dependence on the distance, is applicable
not only to the motion of a planet around the sun, where the distance between the gravitating
bodies is much greater than their dimensions, but also to the motion of satellites in low orbits
around the planets. The gravitational field of a planet at any point outside the planet is practically
the same as if all the mass were concentrated at the center of the planet. And certainly there is no
need for the satellite or the spacecraft to be spherically symmetric, since its dimensions are in any
case negligible compared to the distance between the satellite and the center of the planet. This
means that we can assume the gravitational field of the planet to be homogeneous at the extent of
the satellite, considering the gravitational force to be applied at its center of mass. In other words,
we can consider an artificial satellite of any realizable size and shape to be a material point.

The striking mathematical simplicity of possible trajectories is a distinctive feature of Keplerian
motion. Any possible motion in the Newtonian gravitational field occurs along one of the conic
sections or conics—curves formed by the intersection of a circular cone by a plane. Depending on
the inclination of the intersecting plane to the axis of the cone and the vertex angle of the cone,
the curve formed by the section may be a circle (the intersecting plane is perpendicular to the axis
of the cone), an ellipse, a parabola (the intersecting plane is parallel to a straight line lying in the
lateral surface of the cone), or a hyperbola.

Periodic motions of planets and satellites occur along closed elliptical (in particular circular)
orbits. One of the foci of an elliptical orbit is located at the center of the gravitational force (i.e.,
at the center of the sun for planetary revolutions, or at the center of the earth for an artificial
satellite orbiting the earth).

The parabolic trajectory corresponds to the limiting case of an extremely stretched elliptical
orbit whose second focus is effectively at infinity. In this case, the body is virtually at rest when it
is very far from the center of force (“at infinity”). That is, the speed of the body approaches zero
as its distance increases without limit.

If a body approaches the center of force from infinity where it had a finite (nonzero) speed, the
motion occurs along one of the two branches of a hyperbola. The body swings around the center
of the gravitational force, and then moves away indefinitely along the other side of the hyperbola.
The motion to infinity along a branch of a hyperbola occurs also if a body at a finite distance
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from the center of force has a large enough speed, being accelerated to that speed, say, by a rocket
engine. The initial speed needed for this purpose must exceed some value called the escape velocity.
In this case the speed approaches a nonzero value (called the hyperbolic excess of velocity) as the
distance increases without limit.

Exact analytic solutions to the differential equations of motion, like the solution of Kepler’s
problem for the motion in a Newtonian gravitational field, are remarkable for the simplicity of
motions described by these solutions. Unfortunately, exact solutions are seldom encountered in
physics. When there are perturbing interactions (gravitational forces produced by other planets,
deviations of mass distributions from exact spherical symmetry, etc.), the equations of motion
become non-integrable. The marvel of closed orbits that are found in Keplerian motion, as well
as their wonderful simplicity, vanishes. The mathematical analysis of such perturbed motions is
immensely complicated.

When the perturbing forces are small compared to the main gravitational force, one can use
approximate analytic methods. Keplerian motion in this case can be assumed as the zeroth ap-
proximation to the actual motion. We can consider that the small perturbations cause relatively
slow variations of the parameters characterizing the corresponding Keplerian orbit, and try to
obtain analytic expressions for these slow variations. Such an ellipse with varying parameters,
grazing the actual trajectory, is called the osculating orbit. If we imagine that the perturbations
suddenly vanish, all parameters of the osculating ellipse remain constant during the subsequent
motion, and the body traces the ellipse which touches the actual trajectory at the given point.
This unperturbed Keplerian motion, for at least some part of the osculating ellipse, is very close
to the actual motion.

However, when it is inadmissible to regard the perturbations as small ones, as, for example,
in the general case of the three-body problem, it is impossible to obtain even approximate analytic
solutions. In such cases, to solve the differential equations of motion, we can rely only on numerical
methods.

It is very easy to understand the general idea of the numerical methods of calculation of motion
for a system of interacting bodies. For some initial moment let the position and velocity of the
body under consideration be given. Also given are the positions and velocities of all the celestial
bodies whose forces of gravitation cause the acceleration of the body in question. On the basis
of Newton’s law of gravitation and Newton’s law of motion (Newton’s second law), we calculate
the gravitational acceleration of the given body caused by each of the celestial bodies separately
and thus the total acceleration as the vector sum of these individual accelerations. Knowing
the magnitude and direction of the initial velocity of the body, we calculate the new velocity and
position of the body after a short time interval (after the temporal “step” of integration). Similarly,
we calculate the new velocities and positions of all the other bodies of the system after this time
interval.

For these new positions, we calculate the new acceleration of the given body caused by all the
celestial bodies and also the new accelerations of all the celestial bodies. Then, using the same
scheme, we calculate the new positions of the bodies and their velocities after the next short time
interval, and so on. Thus we follow step by step the motion of the system of interacting bodies
during any finite time interval.

The only approximation that we make in this calculation is the assumption that during each
small time interval (during the step of calculation) the acceleration of the body is constant. Actually
it is changing continuously. We can improve the precision of the calculation by decreasing the
step of integration. To be sure, this improvement is achieved at the cost of a greater number of
calculations.

We have described above the simplest algorithm of integration known as Euler’s scheme. This
method provides relatively low precision and generates accumulating errors. And so in the simula-
tion methods of this program a somewhat more complex algorithm is used (Runge–Kutta method
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of the fourth order) that is free of these deficiencies in Euler’s method.
In all the programs of this package the simulation of the motion of planets and satellites is

based on the numerical integration of the equations of motion. Numerical integration is used
even in the cases for which analytic solutions are available. Analytic solutions are used only for
drawing the theoretically predicted trajectories (if the corresponding option is chosen by the user),
and for the automatic determination of a suitable scale for the representation of the motion on
the computer screen. In other words, Kepler’s laws and the laws of conservation are not used in
the simulation experiments that are performed with the help of the programs. Such is not needed
since the algorithm of numerical integration is based only on Newton’s law of motion and Newton’s
law of gravitation. This means that we can treat the coincidence of the motion simulated in the
programs with the corresponding theoretical predictions as an experimental verification of Kepler’s
laws (by means of a numerical computational experiment) for the motion of a body in a central
gravitational field, and for the motion of two interacting bodies. Or vice versa, if Kepler’s laws are
considered as reliable experimental facts established, say, by numerous astronomical observations,
these computer simulations can be treated as additional experimental evidence for Newton’s laws
of motion that are the basis of classical dynamics.

If a third body is added to a system of two interacting bodies, the problem generally becomes
analytically unsolvable. In other words, there exist no general formulas that describe the motion
of the bodies and that permit the calculation of their positions from arbitrary initial conditions.
Moreover, we cannot make conclusions about general properties of their motions. Evidently, the
reason for the lack of analytical solutions for the three-body (and many-body) problem is related not
only to the mathematical difficulties of the problem, but equally to the extraordinary complexity of
the motions themselves. Some examples of such complex motions can be found in several simulation
programs of this package.

However, we encounter no fundamental difficulties while solving the three-body problem nu-
merically. To solve the three-body problem numerically is just as easy as to solve the two-body
problem. Only the number of calculations for a given time interval increases. Nevertheless, it
should be kept in mind that these universal numerical methods are by no means all-powerful. For
the calculation of the velocity and position of a body after a long time interval, we need to know
the initial state of the system with great accuracy. Moreover, these numerical methods give us no
means to investigate the most general long-time properties of the motions of celestial bodies.
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Chapter 1

Kepler’s Laws

Three principal laws of motion under the central force inversely proportional to the square of
the distance from the center of force (Kepler’s laws) are illustrated in the first three simulation
programs of the package “Planets and Satellites.” The fourth program of this cycle (“Hodograph
of the velocity vector”) is devoted to an interesting property of Keplerian motion concerning the
shape of its trajectory in velocity space.

1.1 Kepler’s First Law

According to Kepler’s first law, the orbits of planets are ellipses with the sun at one focus of the
ellipse. Although the law originally applied only to planets, it is also valid for any body whose
motion is finite and is governed by a central force of attraction that decreases as the square of the
distance of the body from the center of force. In particular, the gravitational motion of natural
and artificial satellites around the earth and other planets also obeys Kepler’s first law: in the
reference frame of the planet the orbits of these satellites are ellipses or circles.

The simulation program called “Kepler’s First Law” uses one of the main geometric properties
of an ellipse to demonstrate experimentally the elliptic form of the orbit. This property is that for
any point on an ellipse the sum of the distances of the point to two fixed points (called the foci of
the ellipse) is a constant equal to the longest diameter of the ellipse. This property is often used
as a definition of the ellipse.

When the “Go” button is clicked, the orbit of a planet (or satellite), calculated numerically
under the assumption that the force decreases as the square of the distance, is continuously dis-
played in the left window on the computer screen. The two straight lines that join the planet with
the center of force and the second focus are simultaneously drawn after equal intervals of time as
the planet moves in its orbit.1 These lines are shown in different colors on the computer screen.

In the right window of the screen, these same lines are simultaneously redrawn, but here they
are aligned along the vertical and placed one after the other so that we can easily add their lengths
visually. We see that for all points of the closed orbit the sum of the lengths of these lines has the
same value. This value is equal to the major axis of the ellipse. Figure 1.1 shows an example of
the final image on the screen.

Since the program calculates the orbit only on the basis of Newton’s laws of motion and the law
of universal gravitation, we can treat the result of the simulation not only as a simple illustration,

1The program determines the position of the second focus beforehand with the help of formulas based on the
conservation laws and on the assumption that the orbit is an ellipse. However, the geometric proof displayed by the
program is quite convincing independently of how the point has been found because the only important feature is
that such a point exists.

16
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Figure 1.1: The Keplerian orbit (left) of a satellite and the geometric addition of its distances
from the two foci (right). Corresponding numbers on the left and right diagrams refer to the same
instants of time.

but rather as an experimental verification of Kepler’s first law (in a computational experiment).
The experiment can be repeated with a different magnitude of the initial velocity, whose direc-

tion in this program is always transverse, that is, perpendicular to the initial radius vector. (The
radius vector is the line directed from the center of force to the orbiting body.) The value of the
initial velocity must be specified in units of the circular velocity for the given initial point. That
is, if we enter 1, the body moves in a circle whose center is at the center of force. If a value greater
than unity is entered, the initial point is the perigee (or the perihelion if the motion of a planet
is simulated in the experiment). That is, this initial point of the orbit is the nearest one to the
center of force. The center of force is located at the near focus of the ellipse. On the other hand,
if the initial velocity is smaller than the circular velocity, the initial point is the apogee (aphelion)
of the orbit; the center of force is located at the remote focus of the ellipse.

On the right side of the screen, the equally spaced vertical lines are equal to the distance of the
orbiting body from the center of force. These lines correspond to the instants that are separated
by equal time intervals. Therefore, the curve joining the ends of these segments (see Figure 1.1)
can be treated as a graph of the time dependence of the distance from the center of force for the
body moving along the orbit. (The ordinate axis of this graph is directed downward.)

Watching the simulation, we can also judge how the velocity of the body changes during the
motion along the orbit. This motion is displayed on the screen in a time scale that is constant
during the simulation. For convenience of observation, this time scale can be varied between certain
limits by dragging the slide on the corresponding scroll-bar. Moreover, positions of the body along
the trajectory are fixed on the screen at equal time intervals, and therefore the final static picture
obtained in the experiment (see Figure 1.1) also shows how the velocity changes along the orbit.
We note that the marked positions of the body are sparse near the perigee (perihelion), where the
motion is fastest, and dense near the apogee (aphelion), where the motion is slowest.

Especially noticeable is the variation in the angular velocity of rotation of the radius vector as
the body moves along the orbit. There is a considerable difference in the size of the angles between
adjacent radius vectors near apogee and the size of the corresponding angles near perigee. (See
Figure 1.1.) This nonuniformity of motion along an elliptical orbit is described quantitatively by
Kepler’s second law, illustrated in the simulation program discussed in the next section.
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There is an option in the program which allows the theoretically predicted orbit to be drawn
before the simulation is begun. The curve is plotted by the program on the assumption that it
is exactly an ellipse defined by Equation (6.12) (see Chapter 6). The orbital parameter p and
eccentricity e of the ellipse are calculated on the basis of the initial conditions that have been
entered. Congruence of the actual trajectory (obtained in the simulation experiment) with this
theoretical curve can be treated as one more piece of evidence that the Keplerian orbit is an ellipse.

A closed elliptical (or circular) orbit corresponds to the case of negative total energy of the
body (provided the gravitational potential energy is chosen to be zero at infinity). To simulate
such a motion, a value of the initial velocity should be entered that does not exceed the escape
velocity. However, the simulation program can also handle the cases of zero or positive total energy,
for which the trajectory is respectively a parabola or a hyperbola. These cases are examples of a
generalization of Kepler’s first law which states that motion in a Newtonian central gravitational
field always occurs along a conic section.

To consider the cases for which the total energy is zero or positive, we chose “Parabolic motion”
or “Hyperbolic motion” respectively in the corresponding drop-down list. We can enter then a value
of the initial velocity which equals or exceeds the escape velocity. In the latter case the trajectory
is a hyperbola. To prove this, the program again draws straight lines from the foci to the points
on the trajectory. Simultaneously in the right window these lines are aligned next to one another
so that we can visually subtract the length of one from the other. It is clear that the difference is
the same for all points of the trajectory. This demonstration proves that the curve is a hyperbola.
The difference in lengths of the lines equals the distance between the vertices of the two branches
of the hyperbola.

Since the direction of the velocity vector is transverse (perpendicular to the radius vector) at
the initial position, this point is the vertex of the hyperbola along which the body recedes to
infinity. Therefore, only half of this branch of the hyperbola is generated. In order to obtain the
other half, the program also simulates the motion of the body from infinity towards the vertex
of the hyperbola. This simulation is achieved in the following way. When the body recedes far
enough from the initial position (beyond the region displayed on the screen), the program reverses
the sign of one of its coordinates (namely, the sign of the coordinate measured from the initial
point in the direction perpendicular to the initial radius vector), and simultaneously reverses the
other component of the velocity. Hence, subsequent motion of the body observed on the computer
screen occurs toward the initial position along the other half of the same hyperbola.

If the option “Predicted curve” is chosen, the program first draws the theoretically predicted
hyperbolic trajectory together with the other branch of the hyperbola and the corresponding
asymptotes. Parameters of the hyperbola are calculated in the program on the basis of the conser-
vation laws for the value of the initial velocity that has been entered. The subsequent simulation
of the motion does not use the results of this preliminary calculation—it is based entirely on a
numerical integration of Newton’s laws of motion. Therefore, coincidence of the actual simulated
trajectory with the predicted curve can be treated as an additional experimental verification of
Kepler’s generalized first law for a hyperbolic motion.

As the body moves away from the center of force, its trajectory gradually approaches the
asymptote of the hyperbola. Eventually the motion is uniform rectilinear motion along the asymp-
tote. The constant speed characteristic of this motion is called the hyperbolic excess of velocity. It
equals the square root of the difference between the squares of the initial velocity and the escape
velocity. The circles in the left window of the screen that fix spatial positions of the body after
equal time intervals become equidistant. In the right window, the graph of the time dependence
of the distance from the center of force asymptotically approaches a straight line.

A similar experiment can be performed for the parabolic motion when the corresponding item
is chosen from the drop-down list. In this case it is not necessary to enter the initial velocity
since for parabolic motion the initial velocity has a unique value, namely the value of the escape
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velocity characteristic of the initial position. The program sets this value automatically when
the option “Parabolic motion” is chosen. At the initial position this velocity is in the transverse
direction. Consequently, the initial position is at the vertex of the parabola. Only half of the
parabola is generated as the body recedes to infinity. To generate the motion along the other half
of the parabola, the program makes the same changes in the position and velocity of the body
when it recedes beyond the area displayed on the screen as for the case of hyperbolic motion. (See
above.) The theoretically predicted parabolic curve is also shown before the simulation when the
corresponding option is chosen.

Questions and Problems

1. Major axis of the orbit. Let the initial velocity of a satellite at some height over the earth
surface be directed horizontally. How is the major axis of its elliptical trajectory oriented
with respect to the vertical line passing through the initial position? Does this orientation
of the major axis depend on the magnitude of the initial velocity?

2. Perigee and apogee of the orbit. Where are the perigee and apogee of the elliptical
orbit of a satellite located relative to the initial point if the velocity at this point is directed
horizontally? Do the positions of these points depend on the magnitude of the initial velocity?
Consider the cases in which the initial velocity is greater and smaller than the circular velocity
for the given initial point.

3. An ellipse or an oval. Why can you conclude from the image displayed on the screen that
the closed trajectory of a planet (or a satellite) is precisely an ellipse, and not an oval or
some other closed curve?

4. Foci of the orbit and the center of force. One of the foci of the elliptical orbit coincides
with the center of force. In which case is this focus of the ellipse nearest to the initial point
of the orbit, and in which case is it the remote focus?

5. Variation of the speed along the orbit. At which point of an elliptical orbit is the speed
of the planet (or satellite) greatest, and at which point is the speed smallest? Observe the
variation in speed of the planet as it travels in its orbit and describe the characteristics of
this variation.

6. The displayed graph. What is the physical sense of the curve obtained in the right window
of the screen? This curve separates the segments whose lengths equal the distances of the
planet (or satellite) from the foci of the elliptical orbit.

7. The eccentricity of the elliptical orbit. How does the eccentricity of the elliptical orbit
resulting from a horizontal initial velocity depend on the magnitude of the initial velocity?
How does the eccentricity of the elliptical orbit change as we increase the initial speed from
zero to that producing a circular orbit and then on to the escape velocity?

(**) For some value v0 of the transverse initial velocity greater than the circular velocity
(v0 > vc), we get an elliptical orbit whose nearest focus is located at the center of force.
What should be the other value of the initial velocity (smaller than the circular one) in order
that the resulting orbit be an ellipse homothetic to the first orbit?

8. Axes of symmetry of a hyperbolic trajectory. For the hyperbolic motion of a body
arising from a sufficiently large initial horizontal velocity, how are the axes of symmetry of the
hyperbola oriented with respect to the vertical line passing through the initial point? Does
this orientation depend on the magnitude of the initial velocity? Does the angle between the
asymptotes depend on the initial velocity?
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9. (*) The hyperbolic excess of velocity. Let the initial velocity v0 of a satellite be greater
than the escape velocity vesc for the initial point. Prove that as the satellite recedes to
infinity, its speed tends to a constant value. Show that this value v∞ does not depend on the
direction of the initial velocity and equals

√
v2
0 − v2

esc.

10. (**) Angle between the asymptotes. How does the angle between the asymptotes of a
hyperbolic trajectory depend on the speed of the orbiting body at the vertex of the hyperbola
(the point nearest to the center of force)? Assume that this speed is expressed in units of
the circular velocity for this point.

What should be the magnitude of the transverse initial velocity in order that the direction
of motion changed through an angle θ as the body recedes from the initial point to infinity?

1.2 Kepler’s Second Law

Kepler’s second law, also known as the law of equal areas, governs the variations of the speed
with which a planet (or a satellite) travels in its orbit. Kepler discovered this law in the early
seventeenth century on the basis of a very careful examination of astronomical data collected by
Tycho Brahe during his many years of observing the motion of the planets.

According to Kepler’s second law, the radius vector directed from the sun to the planet sweeps
out equal areas in equal time intervals. In other words, the areal or sectorial velocity is constant
during the orbital motion of a planet.

For a circular orbit this law means that a planet moves at a constant linear (and angular) speed.
However, the motion of a planet along an elliptical orbit is nonuniform. The motion is fastest at
perihelion and slowest at aphelion. Although Kepler’s second law (as well as the first and third
laws) was discovered through observations of planetary motion, it is also valid for satellites orbiting
a planet.

Newton was the first to prove that for motion which satisfies the law of equal areas, the force
accelerating the body in a curved path is always directed toward the same point. Conversely, if
the force is directed toward the same center, the motion of the body obeys Kepler’s second law.
Thus, Kepler’s second law is a consequence of the central character of forces acting between the
sun and the planets.

Hence the law of equal areas is valid not only for closed circular and elliptical orbits, but also for
infinite parabolic and hyperbolic motions. Moreover, it is valid not only for any Keplerian motion
under a central gravitational force which is inversely proportional to the square of the distance,
but also for any motion in a central field with an arbitrary dependence of force on the distance.

Kepler’s second law can be regarded as a consequence of the law of conservation of the angular
momentum, which holds for any motion in an arbitrary central force field. An analytic derivation
of this conservation law and of the law of equal areas (Kepler’s second law) is found in Chapter 7
of the Manual.

The simulation program allows us to verify Kepler’s second law quantitatively by means of
a computational experiment. The program calculates numerically the motion of a planet or a
satellite under a central force that decreases as the square of the distance. At the same time the
radius vector from the force center to the momentary position of the planet (or satellite) is drawn
on the screen. After equal time intervals, the color of the radius vector changes. Hence adjacent
sectors swept out by the radius vector in equal time intervals are painted in different colors on the
screen. Since all the sectors correspond to equal time intervals, their areas, according to Kepler’s
second law, must be equal. Figure 1.2 shows the screen image when the orbit is completed.

It is difficult to judge visually whether the areas of sectors of different shapes swept by the radius
vector in equal times are actually equal. In order for us to come to a quantitative conclusion, the
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Figure 1.2: The areas swept out by the radius vector in equal time intervals for an elliptic Keplerian
motion.

program also calculates the areas of these sectors. In this calculation the elementary segments
swept out by the radius vector during a step of integration are regarded as narrow triangles. The
areas of these triangles are added until the sector is completely covered. The current value of the
area is displayed on the screen.

We emphasize that the program does not “know” anything about Kepler’s laws. That is, it uses
no information about the laws while working. The program only performs a numerical integration
of the equations of motion (given by Newton’s second law) under the central gravitational force.
Therefore we can consider the equality of areas of segments obtained in this simulation as an
experimental verification of Kepler’s second law.

To demonstrate Kepler’s second law for different orbits, we can vary in the program the mag-
nitude of the initial velocity of the satellite. This velocity in the simulation program is transverse,
that is, it is always directed horizontally (perpendicularly to the radius vector in the initial posi-
tion). Consequently, the major axis of the elliptical orbit passes through the initial position and
the center of the earth.

The magnitude of the initial velocity entered must be expressed in units of the circular velocity
for the given initial point. The values exceeding 1, that is, greater than the circular velocity (but
smaller than the escape velocity 1.41), produce orbits with the perigee at the initial position. If
the initial velocity is set to be less than 1, the initial position is the apogee of the resulting orbit.
It is assumed in this case that the initial position is sufficiently high above earth that the orbit
does not intersect the earth’s surface. The perigee of such an orbit is located over the opposite
side of the earth. The program chooses the scale automatically in order to fit the orbit into the
window.

The program also displays the theoretically predicted orbit beforehand if this option is chosen.
To prove Kepler’s second law for infinite trajectories, an initial velocity that equals or exceeds

the escape velocity is to be entered. In these cases the initial position is the vertex of the parabolic
or hyperbolic trajectory and is the point on the trajectory closest to the earth. The speed of the
satellite is greatest here.

If an initial velocity very close to the escape velocity is entered, the program converts it into
the escape velocity. In this case the trajectory is a parabola.

When the satellite leaves the window, the program simulates the motion along the other half
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of the trajectory, as if the satellite were approaching the earth from infinity. This is done in the
same way as in the preceding program concerning the generalization of Kepler’s first law for open
orbits.

For hyperbolic trajectories, the program draws the theoretically predicted hyperbola and its
asymptotes before plotting the trajectory calculated numerically from the laws of motion if the
appropriate option is chosen. At large enough distances from the earth, the satellite moves almost
rectilinearly along the asymptote and with almost constant velocity. This velocity equals the square
root of the difference between the squares of the initial velocity and the escape velocity. It is called
the hyperbolic excess of velocity.

Questions and Problems

1. Kepler’s second law for different orbits. What is the physical sense of Kepler’s second
law? What does this law imply if we apply it to a circular orbit? To a closed elliptical orbit?
To an infinite hyperbolic orbit?

2. (*) Velocities at the perigee and apogee. For a satellite orbiting the earth in an elliptical
orbit, what is the ratio of velocities at perigee and apogee? How does this ratio depend on
the distances of these points from the center of the earth? What is the ratio of the angular
velocities of rotation of the radius vector for these points?

3. (**) Lapse of time for half an orbit. A satellite revolves around the earth in an elliptical
orbit whose eccentricity is 0.5. Consider that half of the orbit closest to the earth. What is
the ratio of the time taken for the satellite to cover this part of the orbit to the total period
of revolution?

4. Second law and the conservation of angular momentum. How is Kepler’s second law
related to the law of the conservation of angular momentum? In order that Kepler’s second
law hold, is it necessary that the force between a planet and the sun be inversely proportional
to the square of the distance separating them?

1.3 Kepler’s Third Law

Kepler’s third law was applied originally to the planets of the solar system. It states that the
squares of the periods of revolution of the planets around the sun are proportional to the cubes of
the major axes of their orbits. Like the first and second laws, this kinematic relationship between
the periods of revolution and the linear dimensions of the orbits was discovered by Kepler from his
careful analysis of numerous astronomical observations of the planets by Tycho Brahe. A derivation
of Kepler’s laws on the basis of the inverse-square law of universal gravitation was given by Isaac
Newton about a half-century later.

Therefore, Kepler’s third law is valid not only for the planets orbiting the sun, but also for any
group of satellites orbiting a common central body under the influence of a gravitational force of
attraction: the squares of their periods of revolution are proportional to the cubes of the major
axes of their orbits. An analytic proof is given for circular orbits in Chapter 6 and for elliptical
orbits in Chapter 7.

The simulation provides several ways in which Kepler’s third law may be experimentally verified.
The simplest experiment involves only two satellites. Their motion is begun from the same initial
position, where their velocities are transverse (perpendicular to the radius vector) (Figure 1.3).
One of their orbits is always circular and serves as a standard by which the period of revolution
for the other, traveling in an arbitrary ellipse, is to be measured. The only quantity to be entered
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is related to this second orbit. The menu item “Input” allows one of three options: the initial
velocity v0, the semimajor axis a, or the period of revolution T . Whichever of these parameters
is chosen, it should be expressed in units that are characteristic of the standard circular orbit (vc,
r0, or T0 respectively).

Figure 1.3: An elliptical orbit and a circular orbit with a common initial position.

The orbits graze one another at the initial position 1 (see Figure 1.3). The program simulta-
neously simulates the motion of both satellites. The readings of the timer indicate the number
of revolutions performed from the initial moment to the current moment for the satellite moving
along the standard circular orbit. In other words, the timer shows the lapse of time in units of the
period of revolution along the circular orbit.

The simulation of the motion halts automatically at the moment when the elliptical orbit is
completed. Thus, the readings of the timer make it easy to compare the experimental values
of the periods of revolution for the two orbits. For example, if the value 4 is entered for the
semimajor axis of the elliptical orbit (four times the radius of the circular orbit), the period of
revolution for the elliptical orbit, according to Kepler’s third law, equals 8 periods of revolution of
the circular orbit. In other words, during the revolution of the satellite around the ellipse, the other
satellite in the circular orbit performs exactly eight revolutions. Both satellites return to the initial
position simultaneously, thus reproducing the initial configuration after every eight revolutions of
the satellite in the circular orbit.

We emphasize again that the simulation of motion in the program is based only on Newton’s
laws, not Kepler’s. The simulation may therefore be considered a test of the corresponding theo-
retical concepts.

A convenient way to display the results of the simulation experiment may be chosen from
the menu item “Options.” The option “Predicted curve” displays the theoretical orbits (based on
Kepler’s laws) before the motion is simulated using Newton’s laws. The simulation is displayed at
fixed time scale in order that the variations in speed can be easily observed. The rate of animation
between given limits can be adjusted by dragging the slide on the appropriate scroll-bar. The
option “Time marks” forces the program to fix positions of the satellite in the elliptical orbit each
time the satellite in the circular orbit completes a revolution. Using these time marks, we can
judge how the velocity of the satellite changes along the orbit even from the static picture that
remains on the screen after the simulation is completed. The meaning of other options is clear
from their names.

The menu item “Orbits” suggests more sophisticated experiments related to Kepler’s third law.
The option “Common initial point” allows the exploration of a family of elliptical orbits starting
from the same point. The orbits correspond to satellites that are given transverse initial velocities
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of different magnitudes. A special panel can be opened for entering parameters. It is possible
to enter either the initial velocities, the major axes, or the periods of revolution (depending on
the option chosen) for several orbits at once. The quantities entered must be expressed in units
corresponding to the standard circular orbit. We can then observe the simulation of motion of
the satellites and measure their periods either in a group of sequential launches (for which each
satellite in an elliptical orbit is viewed simultaneously with the satellite in the standard circular
orbit), or in a group of simultaneous launches.

The first possibility is convenient for the precise experimental measurement of the period of
revolution: when the option “Sequential launches” is chosen, the simulation halts when the cycle
of motion along an elliptical orbit is completed, and the timer is easily read.

Figure 1.4: Elliptical orbits with common initial position and multiple periods of revolution.

The second possibility allows us to observe the evolution of the satellites’ configurations con-
tinuously for as long as we wish. For example, we can display several orbits with multiple periods
of revolution (Figure 1.4). The initial velocity for orbit 2 (or the semimajor axis of the orbit) is
deliberately chosen so that the period of revolution for this orbit is twice the period for circular
orbit 1. Similarly, for orbit 3 the initial conditions ensure that the period is two times the period
for orbit 2 and four times the period for circular orbit 1. For orbit 4 the semimajor axis is four
times the radius of the circular orbit. Consequently, Kepler’s third law predicts that the period of
revolution for this orbit equals eight periods for the circular orbit.

Observing the motion of the system after the simultaneous launch, we notice that the initial
configuration for two satellites 1 and 2 is reproduced after every two revolutions of the satellite
around the circular orbit. For three satellites 1, 2, and 3, the initial configuration is reproduced
after four revolutions, and for the whole system—after eight revolutions around the circular orbit.
If the option “Time marks” is chosen, spatial positions of the satellites are fixed on the screen
at equal intervals of time after each revolution around the standard circular orbit (see the circles
along the orbits in Figure 1.4). The program can also plot the theoretical elliptical orbits if that
option is chosen. These ellipses include the positions of the second foci, which are marked with
small circles.

To reproduce the simulation described above, as well as those described below, either the
appropriate data can be entered or the corresponding example in the menu item “Examples” can
be chosen.

As we increase the value of the initial velocity, the elliptical orbit gradually elongates. When the
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Figure 1.5: Evolution of the satellites’ configuration after the simultaneous launch with slightly
different initial velocities.

initial velocity approaches the escape velocity, even a very small increment in the initial velocity
dramatically increases the major axis and the period of revolution. We can observe how small
variations in the initial velocity influence the orbit if we generate several long-period orbits that are
produced by slightly different initial velocities, and launch the satellites simultaneously. Figure 1.5
illustrates the evolution of the system. During the early stage of the motion, the positions of
all the satellites are very close, but they become considerably distant in the course of time. The
simultaneous positions of the different satellites in Figure 1.5 are marked by the same numbers.

Figure 1.6: Orbits with equal major axes and equal periods of revolution.

The program provides other ways to vary the conditions of the simulation. Choosing the option
“Arbitrary orbits” found in the menu item “Orbits,” we can call up several orbits with arbitrarily
chosen major axes and eccentricities. When we do so, the initial positions of the satellites may be
found in different places for different orbits.

For example, it is possible to generate orbits with the same major axes but different eccentricities
(Figure 1.6). By Kepler’s third law, the period of revolution depends only on the major axis of
the elliptical orbit, regardless of its eccentricity. Therefore all such orbits in this example have
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equal periods of revolution. If all the satellites are launched simultaneously, they all return to
their starting positions at the same moment, reproducing thus the initial configuration after every
revolution.

The general idea of orbital motion in a planetary system can be illustrated if we generate several
circular orbits with different radii. The larger the radius of the orbit, the greater the period of
revolution and the smaller the orbital velocity (in sharp contrast with the case of a rotating solid,
in which the velocities of particles increase in proportion to their distances from the center of
rotation). If orbits with multiple periods are chosen that are proportional to the small integers
(say, 1 : 3 : 6 : 12), and if the initial positions of the planets are chosen to lie along the same
radial line, we can observe the periodic reproduction of this unusual configuration of the system
in which all the planets again occur simultaneously along the same radial line.

Questions and Problems

1. Third law for circular orbits. The radii of two circular orbits relate as 4 : 1. Applying
Newton’s second law to circular motion in the central gravitational field, find the ratio of the
periods of revolution for these orbits in terms of their radii. In other words, prove Kepler’s
third law for the special case of circular orbits. What is the ratio of the orbital velocities in
this case?

2. (*) Period of revolution and the initial velocity. With what value of the transverse
initial velocity (in units of the circular velocity for a given initial position) must a satellite be
launched to get an elliptical orbit for which the period of revolution of the satellite is twice
the period for the circular orbit in which the satellite starts from the same position? What
initial velocity provides the elliptical orbit shown in Figure 1.3 (with a period of revolution
four times the period for the circular orbit)? Verify your calculated values of the initial
velocity in a simulation experiment.

3. Linear dimensions of an orbit and the period of revolution. By how much must the
linear dimensions of an elliptical orbit be increased to get a period of revolution eight times
greater than that for the original orbit? Does the answer depend on the eccentricity of the
orbit? Verify your answer in the simulation experiment.

4. (*) Mass and the period of revolution. How does the period of revolution of a satellite
depend on the mass of the planet? What is the ratio of the periods of two satellites that
revolve about planets whose masses are in the ratio 4:1 and in orbits whose linear dimensions
are the same?

5. (**) Free fall towards the sun. How long would the free fall of a body towards the sun
be if the body starts to fall (with an initial velocity of zero) from the initial distance equal
to the radius of the earth’s (nearly circular) orbit? During what part of this time would the
body cover the first half of this distance?

1.4 Hodograph of the Velocity Vector for the Keplerian
Motion

One of the most interesting aspects of Keplerian motion is concerned with the shape of its trajectory
in velocity space.

The vector of velocity of a moving body at any moment is directed tangentially to the spatial
trajectory and so in curvilinear motion the direction of the velocity vector continuously changes.
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We obtain the trajectory of motion in velocity space as follows: For each point on the spatial
trajectory, we draw the corresponding vector of velocity so that its tail lies at the origin of velocity
space and its direction is parallel to the tangent to the spatial trajectory at the point in question.
During the curvilinear nonuniform motion of the body, the direction and magnitude of this vector
change. The end of this varying velocity vector generates a curve in velocity space. This curve is
called the hodograph of the velocity vector.

For a circular Keplerian orbit, the magnitude of the velocity is constant and so the variation
of the velocity vector is reduced to a uniform rotation about the origin of velocity space. It is
evident that the hodograph of the velocity vector for a circular Keplerian motion is itself circle
whose center is located at the origin of velocity space. The radius of this circle equals the constant
value of the circular velocity.

As a planet or satellite moves in an elliptical orbit, rotation of the velocity vector is nonuniform,
and both the direction and magnitude of the vector change. However, these variations occur in
such a way that the end of the velocity vector in this case also generates a circle in velocity space
but whose center is not at the origin. In other words, the hodograph of the velocity vector for an
arbitrary Keplerian motion is a circle. An analytic proof of this property based on Newton’s laws
of motion can be found in Chapter 7.

To illustrate this property of Keplerian motion, the simulation program numerically calculates
the motion of a satellite (or a planet) in an elliptical orbit and simultaneously draws both the
spatial trajectory in the left window on the screen and the hodograph of the velocity vector in the
right window (Figure 1.7). In equal time intervals, the vectors of velocity are fixed as tangents to
the spatial trajectory shown in the left window, and the same fixed vectors are shown in velocity
space. We can see clearly that during the motion of the satellite along the elliptical orbit, the end
of the varying vector of velocity generates a circle in velocity space.

Figure 1.7: Keplerian orbit of a satellite and the velocity vectors in space (left), and hodograph of
the velocity vector in velocity space (right). Coinciding numbers in the left and right sides refer to
the same instants of time.

The lower semicircle of the hodograph (starting at point 1 and moving clockwise) corresponds
to the first half of the elliptical orbit, during which the satellite moves clockwise from perigee
towards the apogee and its speed decreases. The other (upper in Figure 1.7) semicircle of the
hodograph corresponds to the second part of the orbit, during which the satellite moves clockwise
from apogee to perigee and its speed increases.
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For an elliptical orbit, the diameter of this circular hodograph equals the sum of the magnitudes
of the velocities at perigee and apogee. (We remember that at these points of an elliptical orbit
the velocity vectors are oppositely directed.) The center of this circular hodograph corresponding
to the elliptic motion is displaced from the origin of velocity space in the direction of the velocity
vector at perigee through the distance equal to half the difference of the velocity magnitudes at
perigee and apogee of the orbit (see Figure 1.7).

The simulation experiment displays the orbital motion of a planet or a satellite and the corre-
sponding behavior of the velocity vector in some time scale. Therefore, observing the simulation,
we can see how the velocity of Keplerian motion changes in time. Positions of the satellite in
the orbit and the corresponding vectors of the velocity are fixed in the simulation at equal time
intervals. Consequently, even from the final static picture on the screen (see Figure 1.7) we can
judge (by comparing the angles between sequential positions of the velocity vector) variations in
the angular velocity of rotation of the velocity vector during the Keplerian motion.

When starting the simulation experiment, we can vary the magnitude of the initial velocity.
If we enter a value smaller than unity (that is, smaller than the velocity producing the circular
orbit), the initial position will be the apogee of the elliptical trajectory. In this case the center of
the circular hodograph will be displaced to the left from the origin of velocity space. The velocity
vector at the beginning of the motion will be small in magnitude and will rotate slowly. As the
satellite approaches the perigee of its orbit, the velocity vector rapidly increases, and its rotation
becomes faster. Then as the velocity vector generates the upper semicircle of the hodograph, the
variations occur in the reverse order.

Figure 1.8: Parabolic trajectory of a body in a central gravitational field and the velocity vectors
in space (left), and hodograph of the velocity vector in velocity space (right). Coinciding numbers
on the left and right sides refer to the same instants of time.

The parabolic trajectory for Keplerian motion (the total energy for which is zero) can be con-
sidered the limiting case of motion along a strongly prolate elliptical orbit whose apogee approaches
infinity. In this case, the velocity of the satellite at apogee approaches zero. The hodograph of the
velocity vector for this limiting case of a parabolic motion is shown on the right side of Figure 1.8,
and the corresponding parabolic trajectory on the left. This hodograph is a closed circle whose
diameter equals the velocity of the body at the vertex of the parabola (the point on the trajectory
nearest to the center of force). The circular hodograph corresponding to the parabolic Keplerian
motion passes through the origin of velocity space. The point of the hodograph which coincides
with the origin corresponds to the infinitely remote point on the trajectory at which the velocity
of the satellite is zero.

If a body, at some point of a Newtonian central gravitational field, gets an initial velocity in the
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transverse direction (perpendicular to the initial radius vector), and its magnitude equals the value
of the escape velocity for this point, the vector of velocity in velocity space generates a semicircle
(lying below the abscissa axis in the right side of Figure 1.8), whose horizontal diameter is the
vector of the initial velocity. Starting from this diameter, the velocity vector, with its end moving
along the semicircle, eventually contracts into a point at the origin of velocity space as the body
recedes to infinity. The semicircle is generated over an infinitely long time.

To obtain the other half of the parabolic trajectory and the corresponding semicircle of the
hodograph of the velocity vector (lying over the abscissa axis in Figure 1.8), the program simulates
also the motion of the body from infinity towards the vertex of the parabola. This simulation
is achieved in the following way. When the body recedes far enough from the initial position
(beyond the space region displayed on the screen), the program reverses the sign of one of its
coordinates (namely, the sign of the coordinate measured from the initial position in the direction
perpendicular to the initial radius vector), and simultaneously reverses the other component of the
velocity. Hence, the further motion of the body occurs towards the initial position along the other
half of the same parabola.

For an infinite hyperbolic motion in a Newtonian central gravitational field, the hodograph of
the velocity vector is also circular (Figure 1.9). In this case the radius of the velocity hodograph is
smaller than the maximal velocity vP of the body at the point nearest to the center of force. The
origin of velocity space is outside the circle.

Figure 1.9: Hyperbolic trajectory of a body in a central gravitational field and the velocity vectors
in space (left), and hodograph of the velocity vector in velocity space (right). Coinciding numbers
in the left and right sides refer to the same instants of time.

In hyperbolic motion, the body approaches the center of force from infinity, where its velocity
is nonzero and is directed along one of the asymptotes of the hyperbola. In the hodograph, the
velocity at infinity is tangent to the circle. In the course of motion the velocity vector generates a
part of the circle away from the origin: Starting from the point of tangency, the magnitude of the
vector gradually increases and reaches its maximal value when the vector extends from the origin
of velocity space to the farthest point of the circle. This vector is the velocity of the body when it
is at the vertex of the hyperbolic trajectory (the point nearest to the force center).

The velocity vector then gradually shortens, its end moving further along the circle. Eventually
the end of the velocity vector reaches the other point of tangency where the velocity assumes its
initial magnitude and the body is infinitely remote. This second tangent to the hodograph is
directed along the other asymptote of the hyperbolic trajectory, along which the body recedes.
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In the simulation, the motion begins from orbital position nearest to the center of force, where
the initial velocity of the body is transverse. (When entering data, we can vary the magnitude of
the initial velocity through a limited range.) The body moves from the initial position to infinity
along a half of the hyperbola. In velocity space, the vector of velocity generates the lower part of
the circular hodograph. In Figure 1.9 the end of the velocity vector moves along the circular path
from point 1 to point 2, then to point 3 and further on, approaching asymptotically the final point
(point of tangency) during an indefinitely long time.

To show the other part of the hodograph, the program also simulates the motion from infinity
toward the initial position along the left part of the hyperbolic trajectory. This is done in the same
way as for the parabolic motion described above.

Questions and Problems

1. (*) Radius of the hodograph of the velocity vector. For any Keplerian motion, the
trajectory in velocity space, that is, the hodograph of the velocity vector, is a circle (or a
part of a circle for an infinite hyperbolic motion). Imagine a satellite orbiting the earth in
an elliptical orbit. Let at the perigee the velocity of the satellite be 1.25 times the circular
velocity for this point. Calculate the radius of the velocity hodograph for the motion in this
elliptical orbit. Express this radius in units of the circular velocity for the perigee of the
elliptical orbit. Calculate also the coordinates of the center of this circular hodograph in
velocity space (position of the center relative to the origin of velocity space).

2. (*) Velocity hodograph for a hyperbolic trajectory. Consider a celestial body (say,
comet) that approaches the sun from infinity, passes through the perihelion of its hyperbolic
trajectory with the velocity equal 1.6 times the circular velocity for this point, and then
recedes to infinity along the other asymptote of the hyperbola. Calculate the radius of
the velocity hodograph for this hyperbolic motion (in units of the circular velocity for the
perihelion). Find also the position (coordinates) of the center for this circular hodograph in
velocity space. During the motion, the end of the velocity vector traces only a part of the
circle. Calculate the central angle that subtends this arc of the circular hodograph.

3. (**) The circular form of the velocity hodograph. Try to prove analytically (on the
basis of Newton’s laws of motion) that for any motion in Newtonian central gravitational
field the trajectory in velocity space is a circle (or an arc of a circle).



Chapter 2

Orbits of Satellites and
Trajectories of Missiles

In the preceding programs, devoted to the simulation of motion of a body in Newtonian inverse
square central gravitational field, it is possible to choose the height of the initial position and the
magnitude of the initial velocity of the satellite arbitrarily. However, it is not possible to change the
direction of the initial velocity. The initial velocity is always directed horizontally (perpendicularly
to the local vertical line, i.e., transverse to the radius vector). For such conditions of the launch,
the major axis of the orbit is oriented along the vertical line passing through the center of the
earth and the initial position, and this initial position is either the perigee or the apogee of the
orbit depending on the magnitude of the initial velocity.

The program “Missiles and Satellites” allows us to also vary the direction of the initial velocity.
The program simulates the motion of an artificial satellite orbiting the earth (or of a ballistic
missile, if the trajectory intersects the earth’s surface) during the passive (freely-falling) part of
its trajectory. We can vary conditions for launching the satellite or missile by choosing different
values of the initial position and the initial velocity for the passive motion of the projectile in the
earth’s gravitational field. It is also possible to set the initial conditions for several missiles or
satellites, and observe their motion either simultaneously or sequentially.

We emphasize that in the program we specify the initial position and the initial velocity for
the passive orbital motion of a ballistic projectile or a satellite. During the lift-off, a missile or a
space craft gains speed because of the thrust created by its jet engines. During this so-called active
stage of the flight we are dealing with the jet propulsion of a rocket projectile rather than with
the free-fall of an artificial celestial body. The initial position which we indicate in the program
corresponds to the end point of the active stage. At this point the jet engine of the last stage of the
rocket terminates its operation. The initial velocity for the orbital or ballistic flight is determined
by the energy delivered to the projectile during the active stage of its flight.

The further passive motion of the projectile occurs only under the force of earth’s gravitation
and probably under the force of air resistance. To simulate the motion of a projectile subjected
to atmospheric resistance, we choose the corresponding option in the menu and enter additional
parameters that characterize the atmosphere of the planet and the cross-sectional area and mass
of the spacecraft or the missile. However, it is reasonable to begin with an investigation of motion
in cases for which air resistance is totally absent or insignificant.

31
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2.1 Families of Keplerian Orbits

2.1.1 Orbits with various directions of the initial velocities

How does the orbit of a satellite change if we vary the direction of the initial velocity? Figure 2.1
shows several orbits of satellites launched from the same initial position S with the initial velocities
that are equal in magnitude but different in direction. At the initial position S the satellites have
the same value of potential energy (if we assume for simplicity that they have equal masses), and
the same value of kinetic energy, since their speeds are equal. Consequently these orbits correspond
to the same value of total energy, and so have equal major axes and equal periods of revolution.
An analytic proof of these statements, based on the laws of motion, can be found in Chapter 7.
With this computer simulation, we can verify these properties experimentally.

Figure 2.1: Orbits of four satellites launched from one point S with equal magnitudes, but different
directions of the initial velocities.

In Figure 2.1, vector v0 is directed horizontally, and, since its magnitude is greater than the
circular velocity vc, the initial position S is the perigee of the corresponding orbit, as we discussed
earlier. The eccentricity e0 of this orbit can be calculated by the following formula:

e0 =
v2
0

v2
c

− 1. (2.1)

A proof of this expression is given in Chapter 6, where the geometric properties of Keplerian orbits
are discussed in greater detail.

For any other direction of the initial velocity, the elliptical orbit is characterized by a greater
eccentricity e1 than the preceding orbit with the horizontal initial velocity (e1 > e0). If the initial
velocity v1 makes an angle θ with the local vertical, the eccentricity e1 of the orbit can be expressed
in terms of the eccentricity e0 of the orbit which corresponds to the horizontal direction of the
same in magnitude initial velocity:

e2
1 = e2

0 + (1− e2
0) cos2 θ. (2.2)
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If we change only the direction of the initial velocity (preserving its magnitude), the length
of the major axis of the resulting elliptical orbit remains the same. Since for a horizontal initial
velocity that is greater than the circular velocity (v0 > vc) the perigee of the orbit occurs at the
initial position, for any other direction of the initial velocity the perigee is lower than the initial
position. Indeed, for a given major axis, the greater the eccentricity the lower the perigee.

If the initial velocity is directed slightly upward, like vector v1 in Figure 2.1 (that is, if the
velocity forms an acute angle θ with the local vertical line), the perigee P of the new orbit (point
1 in Figure 2.1) is displaced from the initial position through an angle ϕP in the direction opposite
to the initial velocity. If we change the direction of the initial velocity downward through some
angle from the horizontal direction, like vectors v2 and v3 in Figure 2.1, the perigee of the orbit is
displaced forward in the direction of the initial velocity (points 2 and 3 respectively).

For the orbit that corresponds to an angle θ between the initial velocity and the vertical line,
the angular position of the perigee (angle ϕP between the radii of the initial position S and the
perigee P ) can be calculated by the formula

tan ϕP = − sin θ cos θ

(vc/v0)2 − sin2 θ
, (2.3)

where vc is the value of the circular velocity for the initial position.
After launching a body into orbit, we obtain an earth satellite only if the distance of perigee

is greater than the earth’s radius. Otherwise the missile travels along the ellipse until it hits the
ground at the point where the ellipse intersects the surface of the earth. In such cases we call the
body a ballistic missile rather than a satellite.

Figure 2.2: Two ballistic trajectories of missiles launched from one point of the earth’s surface
with different initial velocities.

The latter situation is characteristic of all launches for which the passive orbital motion starts
almost from the earth’s surface. In other words, it is impossible to launch a satellite directly from
the ground (even in the absence of air resistance), since the orbit of such a projectile inevitably
crosses the earth’s surface. Examples of two ballistic trajectories are shown in Figure 2.2. The
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projectiles are launched from one point S of the earth’s surface with different velocities v1 and
v2, both being greater in magnitude than the circular velocity. The greater the initial velocity,
the higher the apogee of the orbit, but the projectile nevertheless hits the ground, a result that is
independent of how great the initial velocity is (provided, of course, that the initial velocity does
not exceed the escape velocity). Only if the velocity at the initial position is directed horizontally
and is greater in magnitude than the circular velocity, does the orbit graze the earth’s surface
(exactly at the starting point) rather than intersect it. For a planet with an atmosphere, a satellite
with such an orbit is impossible.

For the initial velocity directed exactly downward, the trajectory is clearly the segment of the
vertical line starting from the initial position and ending at the ground. However, we can consider
the body before hitting the ground to move along a trajectory that is the limiting case of more
and more flattened ellipses with one of the foci at the center of the earth. Eventually such a
flattened ellipse with its eccentricity e → 1 degenerates into a rectilinear segment. The foci of this
degenerate ellipse coincide with the ends of the segment. One of its ends is located at the earth’s
center.

If the initial velocity of the missile is directed vertically upward, the trajectory is a part of
the same degenerate ellipse. The second focus of the degenerate ellipse coincides with the highest
point of this rectilinear trajectory.

Several ballistic trajectories of missiles are shown in Figure 2.3. Each of these orbits starts from
the same point on the earth’s surface, but the initial velocities point in different directions. Their
magnitudes are equal to that for a circular orbit whose radius is the earth’s radius (that is, for a
hypothetical extremely low orbit around the earth). We note the following interesting properties
of this family of trajectories:

1. The major axes of the ellipses are equal since the orbits correspond to satellites with equal
total energy.

2. The major axis of each ellipse is oriented parallel to the corresponding vector of the initial
velocity.

3. One of the foci of each ellipse is located at the center of the earth, while the other focus
lies on the circle whose center is at the initial position, and whose radius equals the earth’s
radius.

If the corresponding option is chosen, the theoretically predicted elliptical trajectories (thin
lines in Figure 2.3) are displayed by the program before the simulation. The actual trajectory,
calculated by a numerical integration of the equations of motion, is traced on the screen in a
different color (thick curves in Figure 2.3). In the absence of an atmosphere, trajectories of the
actual motion coincide exactly with the predicted elliptical curves until they cross the earth’s
surface. We note how the point at which a projectile hits the ground recedes from the starting
point 1 as the angle between the vertical line and the initial velocity is increased from zero to π/2.
For the idealized airless case, this point of incidence tends to the antipodal point (the opposite
end of the diameter passing through the initial position), as the direction of the initial velocity
approaches the horizontal. In space, trajectories of this set occupy a particular region over the
earth’s surface. This axially symmetric region is bounded by a surface of rotation which is an
ellipsoid whose foci are located at the earth’s center and the initial position S. The major axis of
the ellipsoid joins the antipodal point A and the highest point H (see Figure 2.3). This surface is
discussed in greater detail in the following section.
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Figure 2.3: Ballistic trajectories of missiles launched in different directions from the same point S
on the earth’s surface, with initial velocities whose magnitudes are equal to the circular velocity.

2.1.2 Satellites with equal magnitudes of the initial velocities

Imagine a rocket, launched from the earth, rising vertically, and at the highest point of its flight
exploding into many fragments that fly off in all directions with equal speeds. The further motion
of the fragments occurs under the action of the central force of the earth’s gravity. Thus, they
become the earth’s satellites, orbiting along various elliptical Keplerian orbits.

The motion of such fragments can be simulated with the program “Missiles and satellites.”
We enter the height of the initial position and the common magnitude of the initial velocity that
each fragment receives in the explosion. (The initial height and the initial speed can be expressed
either in kilometers and kilometers per second, or in the natural units of the earth’s radius and
the circular velocity for the height of the initial position.) The magnitude of the initial velocity
should not exceed that of the escape velocity. Then several orbits with different values for the
direction of the initial velocities can be prescribed. (If desired, this prescription can be chosen to
be the corresponding example from the item “Examples” in the menu.) Figures 2.4 and 2.5 are
illustrations of the family of elliptical trajectories of bodies starting from a common point S with
equal speeds and different directions. For the family of orbits in Figure 2.4 the initial velocity of
the satellites is greater in magnitude than the circular velocity for the initial position S, and in
Figure 2.5, smaller.

One of the foci is common to each of the elliptical orbits. It is located at the center of the
earth. The second focus of each orbit lies on a circle whose center is located at the common initial
position S. This circle is shown by a dashed line in Figures 2.4 and 2.5. Its radius equals the
distance between the initial position S and the highest point N reached by the fragment that
moves vertically upward from the initial position S. Since the magnitudes of the initial velocities
of each of the fragments are equal, and since the motion of each fragment begins at the same
point, the total energies of each are equal. Therefore, the major axes of the orbits are the same,
and by Kepler’s third law, so also are the periods of revolution. That is, all the fragments whose
elliptical orbits do not intersect the earth’s surface, simultaneously return to the initial position
after a revolution.
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Figure 2.4: A set of elliptical orbits of fragments scattered from the same initial position S in
different directions with equal speeds. This speed exceeds that which generates a circular orbit
(v0 > vc).

These orbits are confined to a particular spatial region. Its boundary is an axially symmetric
surface whose axis of symmetry passes through the center of the earth and the point at which the
explosion occurs. A detailed analysis shows that it is a surface of revolution of an ellipse whose
axis of revolution is the major axis and whose foci are at the center of the earth and the initial
position S. Diagrams of this ellipsoid are shown in Figures 2.4 and 2.5 in which the enveloping
surface (more precisely, its section by a plane) is depicted by a thin solid line. The dimensions
and eccentricity of the ellipsoid are determined by the position of the initial point and by the
magnitude of the initial velocities of the fragments. A rigorous derivation of the parameters of this
bounding surface (based on the geometric properties of Keplerian orbits) is given in Chapter 7.

2.1.3 Orbits of satellites launched in one direction with different mag-
nitudes of the initial velocities

We next consider the elliptical orbits traced by satellites that are launched from the same point
in a Newtonian gravitational field and in the same direction but at different speeds. Orbits like
these were studied earlier for the case in which the velocity was directed horizontally. We recall
that here the major axes of all the orbits are oriented along the vertical line passing through the
initial position. One of the orbits is circular. It is generated by a satellite whose initial velocity
equals the circular velocity.

For any other direction of the initial velocity, a circular orbit cannot be generated no matter
what the magnitude of the initial velocity might be. Several orbits for which the initial velocities
make the same acute angle with the upward vertical are shown in Figure 2.6. The initial position
S is the only point common to the orbits. They are tangent to one another at this point, because
their velocity vectors lie in the same direction here.

An interesting property of this collection of elliptical orbits is related to the position of their
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Figure 2.5: Elliptical orbits and ballistic trajectories of fragments scattered from one initial position
S for the case in which v0 < vc.

foci. One focus is common to all the orbits. It is located at the center of the earth and so of course
this set of foci is represented by a single point. The foci of the other set are located on one and the
same straight line that passes through the initial position S (see Figure 2.6). This line forms an
angle with the upward vertical at the initial position that is twice the angle formed by the initial
velocity with the upward vertical. (For horizontal initial velocities, this property means that the
foci of this second set lie on downward vertical through the initial position.) This property of the
set of orbits under consideration can be easily proved geometrically if we remember the optical
property of the ellipse (see Chapter 6), according to which all light rays emanating from one focus
are reflected by the elliptical mirror toward the other focus.

Figure 2.7 shows a set of ballistic trajectories of missiles launched at different speeds from a
point on the earth’s surface. The velocity of each is directed at an angle of 45◦ with the upward
vertical. In the absence of air resistance, these trajectories are parts of ellipses with a common
focus at the center of the earth. If the initial velocity is small compared to the circular velocity, the
portion of the ellipse above ground is approximately a parabola. This is the parabolic trajectory
that we usually assign to a projectile in the approximation of a “flat earth” and in the absence of
the air resistance.

For small initial velocities and consequently short ranges (compared to the earth’s radius), the
gravitational field of the earth can be considered uniform, i.e., constant in magnitude and direction
(homogeneous) along the whole trajectory, and the above approximation is clearly applicable.
However, we should keep in mind that actually the trajectory is a portion of an ellipse with one of
the foci at the center of the earth.

All the trajectories of the set are tangent at the initial position. Orientations of their major
axes depend on the magnitude of the initial velocity. We note that the other foci of all the ellipses
are located on the straight line that passes horizontally through the initial position. Such an
alignment of the second foci is explained by the optical property of the ellipse. The projectile
whose initial velocity equals the circular (first cosmic) velocity, hits the ground at a point whose
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Figure 2.6: Elliptical trajectories of satellites launched in one direction with different magnitudes
of the initial velocities.

angular distance from the initial position is exactly 90◦.

Questions and Problems

1. Launching a satellite with the help of a cannon. Is it possible to launch an earth
satellite by shooting a ball from a cannon staying on the ground? The cannon is powerful
enough to provide the ball with a velocity exceeding the circular velocity.

2. Orbits with the initial velocities equal to the circular velocity. Consider several
orbits of missiles starting from one and the same initial position on the surface of the earth
with various directions of the initial velocity. Let the magnitude of the initial velocity be
equal to the circular velocity for the chosen initial position S on the surface (that is, to the
first cosmic velocity, Figure 2.3). Assume that there is no atmosphere.

(a) Prove that the major axis of such an orbit is parallel to the initial velocity vector. Prove
also that the length of the semimajor axis equals the distance from the center of the earth
to the initial position S. (This distance is the radius R of the earth if S is on the earth’s
surface.)

(b) Calculate the maximal height over the earth’s surface reached by one of the missiles
(express your answer in units of the earth radius). What initial angle provides this maximal
height?

(c) (*) Show that the second focus of these orbits is located on a circle whose center is at
the initial position, and whose radius equals the earth’s radius. (The diameter of the circle
is the line between the earth’s center and the point of maximal height).

(d) (*) Which of the missiles is the last to hit the ground? How much time elapses between
launching and striking the ground?

(e) (**) Find the angular position of the point, measured from the initial position, at which
the missile hits the ground if its initial velocity makes an angle θ with the vertical line at the
initial position. How long does the flight of the missile last?
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Figure 2.7: Ballistic trajectories of missiles launched at an angle of 45◦ with different magnitudes
of the initial velocities.

(f) (*) What is the eccentricity of the elliptical bounding surface which envelopes all the
trajectories?

3. Set of orbits with equal magnitudes of the initial velocities. Let the explosion of a
rocket occur at a distance r0 from the center of the earth, let all the fragments be scattered
in various directions, and let the magnitudes of the initial velocities be equal to 1.1vc, where
vc is the circular velocity for the initial position (for the distance r0).

(a) (*) Calculate the greatest distance from the center of the earth reached by the fragments
(point N in Figure 2.4).

(b) (*) Calculate the distance from the center of the earth for the most remote point reached
by the fragments on the vertical line antipodal to the initial position of the explosion (point
A in Figure 2.4). Which of the fragments reaches this point?

Adding r0 to the calculated distance, we get the distance of this most remote point A from
the initial position (from the point of the explosion). Compare this distance with the distance
of point N from the center of the earth calculated in the preceding item (a). Can you explain
without calculations why these distances are equal?

(c) (*) Prove that the second foci of all the elliptical orbits of the set lies on a circle whose
center is located at the common initial position S, and whose radius equals the distance
between the initial position S and the highest point N reached by the fragment that moves
along the vertical line passing through the initial position.

(d) (*) Calculate the eccentricity of the elliptical boundary that envelopes all the trajectories.

(e) (**) Prove that the boundary of the region occupied by the trajectories of the fragments
is a dilated ellipsoid of rotation whose major axis is the segment joining the above mentioned
points N and A (Figure 2.4), and whose foci are located at the initial position S of all the
orbits and at the center of the earth.

4. (*) Orbits of satellites launched from one point in one direction with different
magnitudes of the initial velocities. Prove that the second focus of each orbit of the set



CHAPTER 2. SATELLITES AND MISSILES 40

is located on one straight line passing through the initial position (see Figure 2.6). Prove
that this line forms an angle with the upward vertical that equals twice the angle formed by
the initial velocity with this vertical.

2.2 Evolution of an Orbit in the Atmosphere

Air resistance is added to the gravitational force whenever a satellite is launched into an orbit
which passes through the atmosphere. The program “Missiles and Satellites” is able to display the
evolution of the orbit under the influence of the atmosphere.

If the satellite’s orbit passes over the earth at large altitudes where the air is extremely rarefied,
the force of air resistance experienced by the satellite is very small. However, the influence of the
air resistance on the orbit is of a secular, accumulating (and increasing) character. During large
time intervals, a very small atmospheric drag can produce significant variations in the satellite’s
orbit.

In particular, if initially the orbit is an elongated ellipse whose perigee lies within the upper
strata of the atmosphere, the apogee of the orbit lowers after each revolution, and the orbit
gradually approaches a circle. To explain the evolution of the orbit, we must take into account
that for a short time the satellite travels through the atmosphere each time it passes through the
perigee. Because of air drag, the satellite emerges from the atmosphere with a speed a bit smaller
than it had before entering.

As an approximation, we can consider that the satellite moves along a Keplerian ellipse under
only the force of earth’s gravity, and that it experiences air resistance almost instantaneously only
at one point of its orbit, as if at the perigee it pierced an invisible thin wall. Consequently, each
time the satellite passes through perigee, its speed is slightly reduced. This almost momentary
reduction in speed at perigee influences first of all the distance of the apogee from the center of the
earth while leaving the distance of perigee very nearly the same. Thus, the orientation of the major
axis of the orbit is almost unchanged, but the major axis itself diminishes with each revolution.
The lower the perigee, the greater the effect.

Figure 2.8: Evolution of two initially almost identical orbits with slightly different perigee height.
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Figure 2.8 shows the trajectories of two satellites launched into almost identical orbits. (The
major axes of the orbits are oriented differently to make observation of the motion more convenient.)
The only essential difference between the orbits is that initially the perigee of satellite 1 is slightly
lower than that of 2. The dashed circle around the planet indicates the (conventional) upper
boundary of the atmosphere. Passing through the perigee, satellite 1 experiences a greater air
resistance than does satellite 2, and the apogee of its orbit is lowered more rapidly. When satellite
1 hits the ground, the other is still orbiting the earth, though the apogee of its orbit is also gradually
lowering.

In fact, air resistance acts along an extended part of the orbit in the vicinity of the perigee
rather than at this single point. The result is that the height of the perigee is also decreased with
each revolution, although the apogee height is decreased by a much greater amount because of
air resistance experienced by the satellite near the perigee of its orbit. As the major axis of the
orbit becomes smaller, the period of one revolution also diminishes. In addition the orbit gradually
approaches a circle.

When the orbit of the satellite becomes nearly circular, the satellite is subjected to air drag all
along the orbit. Dissipation of the energy caused by air resistance causes the height of the satellite
to diminish with each revolution. Its actual trajectory is a gradually twisting spiral. When the
trajectory reaches the low strata of high atmospheric density, air resistance increases sharply, and
the satellite cannot complete the next loop. Figure 2.9 depicts this final stage of evolution of
the orbit. To make the changes in the trajectory easily observable, the effects of air resistance
are exaggerated. Actually, for a planet with an earth-like atmosphere, this spiraling trajectory
descends at first rather slowly in almost circular loops.

Figure 2.9: The late stage of evolution of an orbit in the atmosphere.

Considering consecutive loops of the trajectory as circles with decreasing radii, we conclude
that the orbital velocity of the satellite increases with each revolution. It develops that because
of air resistance, the satellite is accelerated in the direction of its motion, as if the retarding force
of the air resistance were pushing the satellite forward, a most unexpected result. This surprising
consequence of the laws of dynamics is called the aerodynamical paradox of the satellite.

However, there is no real mystery in this phenomenon. The total acceleration is the vector sum
of the gravitational acceleration, directed towards the earth’s center, and the acceleration created
by air resistance, directed opposite to the velocity. The actual motion of the satellite occurs along
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a twisting spiral rather than a circle. Consequently, the vector of the normal to the trajectory
is directed not toward the center of the earth but rather slightly behind the center. Hence, the
gravitational force has a forward component along the trajectory.

Figure 2.10 shows the tangential component gτ of the acceleration g created by the gravitational
force. This tangential component points forward along the velocity vector v. It can be shown that
the magnitude of this component is twice as great as the magnitude of the deceleration due to the
air. Hence the total tangential acceleration is equal and opposite to that due to the air, and so the
speed of the satellite increases.

The tangential acceleration occurs just as if the direction of the resistance of the air were
reversed so that the air pushes the satellite forward! This unexpected effect is produced by the
combined actions of the tangential air resistance and the radial gravitational force.

Figure 2.10: Components of the ac-
celeration created by the gravita-
tional force.

Figure 2.11: Trajectories of a ball fired horizon-
tally by a cannon from a high mountain.

Thus, atmospheric resistance causes a gradual growth in the speed of the satellite instead of a
gradual decrease. In the case of an elliptical orbit, this conclusion is true for the speed averaged
over a complete revolution.

The growth of the speed does not contradict the law of the conservation of energy. Clearly,
because of the loss of energy through friction with the air, the total mechanical energy diminishes
in spite of the increasing velocity of the satellite. The resulting increment in the kinetic energy is
more than canceled by a greater decrease in the potential energy. Indeed, in the inverse square
gravitational field the mean value of the (negative) potential energy in magnitude is twice the mean
value of the kinetic energy.

Because of air resistance a missile launched horizontally, say, to the east, can hit the ground
in the opposite hemisphere. We note that this result is not possible if there is no atmosphere.
Such a situation is shown in Figure 2.11, which resembles a famous, prophetic illustration from
one popular book of Newton. Imagine that we position a large cannon at the top of a very high
mountain, whose summit emerges over the atmosphere. We point the cannon horizontally and fire
one ball after another. The first cannon ball falls to earth near the foot of the mountain. The
second ball has a greater initial velocity, and bends round some part of the globe before falling to
the ground. And finally the ball is fired with a velocity that is sufficient to make the ball orbit
around the earth.

From this picture we can conclude that Newton was the first to build a bridge between familiar
everyday phenomena on the earth and mysterious motions of the celestial bodies. Looking forward
much further than his famous predecessors, Galileo and Kepler, Newton asserted that the motions
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of a cannon ball and of the heavenly bodies are governed by the same universal laws of physics.
Moreover, we may guess from this picture that Newton may have foreseen that sooner or later man
would launch an artificial satellite of the earth!

∗ ∗ ∗
In the simulation program it is assumed that the resistance of the air is proportional to the local

density ρ of the atmosphere and to the square of the satellite’s velocity, and is directed opposite
to the velocity. These assumptions are certainly valid for objects like satellites in the atmosphere
that move in a gas medium with velocities greater than the characteristic speed of thermal motion
of the gas molecules.

The density ρ of air is assumed in the program to decrease exponentially with the altitude h
above the surface of the planet:

ρ(h) = ρ0e
−h/H . (2.4)

Here ρ0 is the density at the surface (at h = 0), and H is the characteristic height at which
the density is e ≈ 2.72 times smaller than at the surface. This expression for the dependence
of the density on height ρ(h) is valid for the atmosphere in the state of thermal and mechanical
equilibrium in a uniform gravitational field (T = const and g = const throughout the atmosphere).
It is admissible to consider the strength of the gravitational field g (the acceleration of free fall)
to be independent from the height h when the characteristic height H of the atmosphere is small
compared to the planet’s radius R: H ¿ R. This condition is clearly fulfilled for the earth’s
atmosphere and the atmospheres of other planets of the solar system. The assumption concerning
the thermal equilibrium of the atmosphere is a more serious restriction to applicability of Eq. (2.4).
An improvement of this simplified model of the atmosphere is achieved if the characteristic height
H in Eq. (2.4) is considered as a function of the altitude h because the air temperature T changes
with the altitude (see Chapter 6).

The exponential dependence expressed by Eq. (2.4) means a very rapid decrease of the air
density with the altitude, and yet the density of air up to altitudes of 160 km is such that it does
not allow satellites to orbit the earth for a prolonged time. The higher the altitude of the orbit,
the longer the satellite remains in orbit.

For the upper strata, this model of an equilibrium, exponential atmosphere is only approximate.
At high altitudes the density of air depends strongly on the local temperature and on conditions
of illuminance by the sun’s radiation. The density at a given altitude changes considerably with
the 24-hours cycle, as though in daylight the upper atmosphere thickened, increasing its density
under the sun rays. At the height of 350 km over the earth’s surface the density in the daytime is
1.2 times greater than in the night, and at the height of 500 km—approximately 3 times greater.

In the program, the characteristic height of the atmosphere is a parameter which we can widely
vary. For instance, we can give an exaggeratedly high value to H in order to make the effect of air
resistance much greater than it is in real situations. Such simulation experiments can help us to
better understand the effect of air resistance in space flights around the earth or other planets.

The resistance of air experienced by a satellite in the upper strata is proportional to the local
density of the atmosphere, to the square of the velocity of the satellite, and to its cross-sectional
area. It depends also on the shape of the satellite. A detailed explanation of these properties of
the air drag force is given in Chapter 6.

The acceleration produced by this force of atmospheric drag is inversely proportional to the
mass of the satellite. Consequently, this perturbational acceleration can be expressed by:

a = −Cρ(h)vv, (2.5)

in which the coefficient C is proportional to the cross-sectional area of the satellite and inversely
proportional to its mass. It has especially large values for light, hollow satellites like balloons
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inflated with a gas. Such satellites are subjected to air resistance (as well as to the radiant pressure
of sunlight) much more so than are massive compact bodies, and can be used for the experimental
investigation of the upper atmosphere.

Describing the motion of a satellite, we refer it to the geocentric frame whose axes are fixed
with respect to remote stars. This frame does not rotate in space, although its origin moves around
the sun together with the earth in an almost circular orbit. The unperturbed geocentric (circular
or elliptical) orbit of the satellite lies in a plane whose orientation is fixed in space relative to the
stars and does not change in time. However, the surface of the earth and the atmosphere move
relative to the plane of the orbit due to the 24-hours rotation of the earth about its axis.

The acceleration a given by Eq. (2.5) is directed against the velocity v of the satellite relative
to the air. The atmosphere is involved by the earth in its axial rotation, so that v in Eq. (2.5) is
actually the vectorial difference between the velocity of the satellite’s orbital motion and the veloc-
ity of the atmosphere produced by the 24-hours rotation of the earth. Therefore the perturbational
acceleration a of the satellite has a component perpendicular to the plane of its (non-equatorial) or-
bit. However, it can be shown that the change in orientation of the orbit caused by this component
of the acceleration during the whole life of the satellite is negligible. Therefore in the simulation
program it is assumed that v in Eq. (2.5) is the orbital velocity of the satellite.

The second parameter to be entered in simulating motion under air resistance (called here the
air drag coefficient) is the ratio of the acceleration produced by air resistance when the satellite
moves through the atmosphere at h ≈ 0 with a velocity equal to the circular velocity at h ≈ 0,
to the gravitational acceleration (acceleration of free fall) near the surface of the earth. This
dimensionless parameter depends both on the density of the atmosphere near the surface and on
the characteristics of the satellite (its mass and cross-sectional area). The program enables us to
compare the influence of the atmosphere on satellites with different mass-to-cross-sectional-area
ratios by simultaneously launching several satellites from the same spatial point and with the same
initial velocity, but with different values of the air drag coefficient.

The program also allows us to compare the actual motion of a satellite or a missile under
the influence of the air resistance, with the corresponding unperturbed motion governed only by
gravity. At any instant during the simulation, we can cause the program to display the osculating
ellipse along which the projectile would continue to move if air resistance were absent, starting from
the current values of the projectile position and velocity (which are used as the initial conditions
for the calculation of the subsequent unperturbed motion).

To implement this feature, at the beginning of the simulation we select the option “Unperturbed
curve” from the menu. When this item is checked, the program draws the osculating ellipse each
time we click the button “Pause.” When we resume the simulation after the ellipse is displayed, the
difference between the actual motion under the air drag and the idealized unperturbed Keplerian
motion is evident.

If we have chosen to launch several satellites (conditions for which are listed in a table), the
program automatically chooses the scale that simultaneously displays all the (unperturbed) tra-
jectories in the window. However, we can override the automatic scaling and customize the scale
in order to make some specified orbit fit the window (other orbits at this scale may occur to be
partly clipped by the borders of the window). To do so, we switch off the check “Autoscaling”
in the panel “Input,” and select some orbit in the list. We next click the button “Rescale.” The
program chooses an optimal scale to display the selected orbit in the window.

Using the “Input” panel, we can edit the list of chosen launches. To remove some orbit from
the simulation, we select the corresponding line in the list and click the “Remove” button. To add
a new orbit, we enter the necessary parameters by typing the values into the corresponding boxes,
or by dragging the slides on the scroll-bars. We next click the button “Add.” A new line with the
parameters that are presently displayed in the boxes is added to the list of launches.

When we make a sequential simulation of several launches, it is also possible to display the
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motion along the simulated orbit in a separate window. To open such a window with an increased
image of the orbit, we check the menu item “Zoom.” We can change position of this window on
the screen and resize it for a more comfortable observation.

Questions and Problems

1. (*) Evolution of the circular orbit in the upper atmosphere. A satellite orbiting the
earth in a low circular orbit is continuously subjected to a very small air resistance caused
by the rarefied upper strata of the atmosphere. After a large number of revolutions, the
radius of the satellite’s orbit (the distance from the center of the earth) has diminished by
0.2% (that is, by a factor of 0.002). By what factor has the velocity of the satellite changed
during this time? By what factor has the period of revolution changed? Assume that each
individual loop of the satellite’s trajectory can be considered as almost a closed circle.

2. (*) Aerodynamical paradox of the satellite. Explain why the retarding force of air
resistance in the upper strata of the atmosphere causes an increase in the orbital velocity of
the satellite. How can you reconcile this fact with the law of the energy conservation?



Chapter 3

Active Maneuvers in Space Orbits

Many interesting problems in space dynamics are associated with modifying the orbit of a satellite
or a spacecraft in order to produce a particular trajectory for an intended space flight. The orbit
can be modified by applying a brief impulse to the craft. In particular, the velocity of the craft can
be changed by the thrust of a rocket engine that is so oriented and of such duration as to produce
the desired result. The maneuver should be executed at a proper instant by the astronauts of the
spacecraft or by a system of remote control.

When the engine is very powerful and operates for a very short time (so short that the spacecraft
covers only a very small part of its orbit during the thrust), the change in the orbital velocity of
the spacecraft is essentially instantaneous. In this simulation it is assumed that this change occurs
instantly. After such a maneuver the spacecraft continues its passive orbital motion along a new
orbit. The parameters that characterize the new orbit depend on the initial conditions implied by
momentary values of the radius vector and the velocity vector of the spacecraft at the end of the
applied impulse.

With the simulation program that deals with maneuvering a spacecraft, we can design a space
flight beforehand and then carry out its simulation, playing the role either of a space pilot or of
a distant operator using remote control. The necessary maneuvers of the spacecraft are executed
automatically according to the program that we have entered, or we do them manually by instantly
changing the velocity vector of the craft at appropriate moments in the course of the simulation.

3.1 How to Operate the Program

It is assumed that originally the spacecraft is docked at a permanent station that orbits the earth
(or some other planet) in a circle. Both the height of this orbit and the magnitude of the additional
velocity of the spacecraft are to be entered beforehand. This additional velocity (sometimes called
the characteristic velocity) is imparted by the rocket engine to the spacecraft after it is undocked.

There are two ways, automatic and manual, to control the instant at which this maneuver takes
place. For automatic control, we enter the time beforehand (during the design time) by typing
the time into the box “Time of maneuver” of the input panel, which we can open by choosing the
corresponding item in the menu. The time zero corresponds to the instant at which the simulation
starts. We can choose either natural units of time and velocity, namely, the period of the station in
its circular orbit and the corresponding circular velocity, or the usual units (seconds and kilometers
per second). When we have chosen the magnitude of the additional velocity and indicated the time
for the maneuver, we click the button “Add” in order to include the values into the list of ordered
maneuvers. Direction of the additional velocity for this maneuver depends on which of the options
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(“Up,” “Down,” “Forward,” or “Backward”) is chosen in the frame “Direction.” This direction
can be fixed either relative to the local horizon, or relative to the vector of instantaneous velocity
of the spacecraft, depending on the choice of option in the frame “Orientation.”

In this way we can order as many maneuvers as we like, adding in sequence the required values
of the additional velocity and its direction, as well as the time the maneuvers start, to the list of
ordered maneuvers. We can edit the list not only by adding new items but also by removing some
items (to do so, we select an item and click the button “Remove”), or by inserting additional items.
To insert an item, we indicate the required additional velocity and the time for the maneuver in
the corresponding boxes, and in the list we select the item before which we want to insert the new
item. We then click the “Insert” button.

When the list is ready, we click the “Ok” button. The simulation program performs the ordered
maneuvers if we choose the option “Reproduce” in the frame “Maneuvers,” and click the “Start”
button.

We can avoid a preliminary calculation of the time at which each maneuver is to begin if we use
the manual control. Watching the motion of the space station on the computer screen, we can click
one of the four arrow command buttons in the upper panel of the window in which the motion is
displayed. We thereby give a command to undock the space vehicle from the orbital station and to
instantly add velocity to the vehicle by the thrust of its rockets. In the simulation, this additional
velocity is imparted to the spacecraft just at the moment we click the corresponding command
button. The orientation of the additional velocity ∆v depends on which of the four arrow buttons
we click.

Vector ∆v of the additional velocity lies in the plane of the orbit and can have one of the
four orientations: up, down, forward, or backward. These directions of ∆v are defined either with
respect to the vector v of the instantaneous velocity of the spacecraft, or with respect to the local
vertical line at the point of the maneuver, depending on the option chosen before the maneuver.
The magnitude of the additional velocity is determined by the value which has been entered in the
corresponding box of the panel “Input” before the simulation.

During the subsequent simulation, we can compare the motion of the space vehicle with the
motion of the orbital station, which continues to stay in the circular orbit around the planet.

We can perform several orbital maneuvers during the space flight, each time using the manual
control to pick the instant the rocket engine is to start and the direction of the additional impulse.
However, the magnitude of the additional velocity for each of the maneuvers must be chosen
beforehand and added to the list of ordered maneuvers in the panel “Input.” We do this in the
same way as we do for the automatic control, when we enter the height of the original circular
orbit and other parameters of the simulation. For each consecutive maneuver, the magnitude of
the additional velocity equals the next value in the list.

If we click one of the arrow command buttons while the program is executing the sequence
of maneuvers ordered beforehand, we force the program to automatically switch to the mode of
manual control. This means that the instants of subsequent maneuvers, as well as the directions
of the additional velocity, indicated in the list of ordered maneuvers, are ignored by the program.
We determine these instants during the simulation manually by clicking on the arrow buttons at
the appropriate times.

If manual control is to be used during the simulation, it is not necessary to indicate beforehand
the instants and directions of the additional velocity for the sequence of proposed maneuvers. (If
we have done so nevertheless, manual control overrides the values entered earlier.) We just input
the magnitude of the additional velocity for a maneuver into the corresponding box, and leave the
box “Time of the maneuver” empty. We next click the “Add” (or “Insert”) button, and the value
of the additional velocity is included into the list of maneuvers with an indefinite value of the time.
It is assumed that the time will be specified manually during the simulation.

During the simulation, when the list of ordered maneuvers is exhausted (it makes no difference
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whether the mode is automatic or manual control), we can nevertheless continue performing ma-
neuvers manually. In this case the last value of the magnitude of the additional velocity in the list
is used each time one of the arrow buttons is clicked.

Under manual control, the program stores in memory the sequence of maneuvers that are
performed. All their characteristics, including the times and directions of the additional velocity,
are included into the list. This sequence of maneuvers can be reproduced afterwards by clicking on
the “Restart” button and choosing the option “Reproduce” in the frame “Maneuvers.” (To enable
the option button “Reproduce” during the simulation, we should click on the “Pause” button.)

Before restarting the simulation, we can edit the list of maneuvers and make the necessary
corrections to the parameters. We do this in the way described above by using the panel “Input,”
which can be opened by choosing the corresponding item in the menu.

Working with the program, we can open an additional window in order to simultaneously
display the motion of the space vehicle in another frame of reference. This additional frame is
associated with the orbital station. More precisely, this frame is fixed to the rotating straight line
joining the center of the planet with the orbital station, so that one of the coordinate axes is always
directed along this line. Since this frame rotates uniformly around the planet together with the
orbital station, it is a non-inertial frame of reference, in which the orbital station is at rest. In
other words, the relative motion of the space vehicle displayed in this window shows the motion
as seen by the astronauts observing it from the orbital station.

In unusual conditions of the orbital flight, navigation is quite different from what we are used
to on the earth, and our intuition fails us. The relative motion of the spacecraft observed in this
additional window reveals many extraordinary features that are hard to reconcile with common
sense and our everyday experience.

To open the window that displays the relative motion, we click the menu item “Zoom,” “Relative
Motion.” If we like, we can resize it and move around the screen in the usual way. If the scale
chosen automatically by the program is not satisfactory, we can change it by clicking on the menu
items “Rescale,” or “Zoom in” and “Zoom out.” The item “Rescale” is useful when we have
already simulated the motion but wish to repeat it with the same values of parameters.

It is recommended that when starting this program, we look through the set of ready examples
with which the program is provided. These examples illustrate various possible orbital maneuvers.
To open the panel with the list of examples, we click the menu item “Examples.” With the help
of the menu “Options” of the panel “Examples,” we can open either a set of basic examples, or an
advanced set with more sophisticated topics. To run an example, we select it from the list and click
the “Ok” button. We next click the button “Start” in the main panel. We do not need to enter
data to run the simulations from these examples. Further on, we can create our own examples and
store them as additional (customized) sets.

3.2 Space Flights and Orbital Maneuvers

The aims of orbital maneuvers may be varied. For example, we may plan a transition of the vehicle
into a higher circular orbit in order to remain in it for some time, eventually returning to the orbital
station and soft docking to it. Or we may wish to design a transition of the landing module to
a descending elliptical orbit that grazes the earth’s surface (the dense strata of the atmosphere)
in order to return to the earth from the initial circular orbit. We may want to launch from the
orbital station an automatic space probe that will explore the surface of the planet from a low
orbit, or, on the other hand, to send a probe far from the earth to investigate the interplanetary
space. The orbit of the space probe must be designed to make possible its return to the station
after the necessary investigation is over.

To plan such space flights, we must solve various problems related to the design of suitable
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orbits. To make a transition of the space vehicle into a desired orbit, we must calculate beforehand
the magnitude and direction of the required additional velocity (the characteristic velocity), as well
as the time at which this velocity is to be imparted to the space vehicle. As a rule, the solution
of the problem is not unique. The complexity of the problem arises from the expectation that we
choose an optimal maneuver from many possibilities. The problem of optimization may include
various requirements and restrictions concerning admissible maneuvers. For example, there may
be a requirement of minimal expenditures of the rocket fuel, with an additional condition that
possible errors of the navigation and control (in particular, errors in determining the time for the
maneuver) do not cause inadmissible deviations of the actual orbit from the calculated one.

3.2.1 Way back from space to the earth

As an example of active maneuvers of a spacecraft staying originally in a low circular orbit around
a planet, let us consider the problem of transition of a landing module to a descending trajectory.
For a safe return to the earth, the landing module must enter the dense strata of the atmosphere
at a very small angle with the horizon. A steep descend is dangerous because of the rapid heating
of the spacecraft in the atmosphere. The thermal shield of the landing module must satisfy very
stringent demands. For a manned spacecraft, large decelerations caused by the air drag at a steep
descend are inadmissible mainly because of the dangerous increase in the pseudo weight of the
space travellers. All this means that the planned passive descending trajectory must just graze the
upper atmosphere.

We shall consider and compare two possible ways to transfer the landing module into a suitable
descending trajectory.

1. After the landing module is undocked from the orbital station, it is given an additional
velocity directed opposite to the initial orbital velocity.

2. The additional velocity of the landing module is directed downward (along the local vertical
line).

In all cases, any additional velocity transfers the space vehicle from the initial circular orbit to
an elliptical orbit. One of the foci of the ellipse is located, in accordance with Kepler’s first law,
at the center of the earth.

Figure 3.1: Descending elliptical trajectory of the landing module after a backward impulse is
applied at point A (left), and the descent of the module as it appears to the astronauts on the
orbital station S (right).
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In the first case, a brief operation of the rocket engine changes only the magnitude of the orbital
velocity, preserving its direction. Therefore, at the point where the rocket engine operates (point
A in Figure 3.1), the descending elliptical orbit has a common tangent with the original circular
orbit. This point A is the apogee of the elliptical orbit. Its perigee is located at the opposite end P
of the major axis, that passes through A and the center of the earth. It is evident that precisely at
this point P the ellipse must just graze the surface of the planet (more exactly, the ellipse grazes
the dense strata of the atmosphere). The landing module must enter the atmosphere near this
point of the descending orbit.

The additional (characteristic) velocity ∆v necessary for the transition from the circular orbit
to this elliptical trajectory can be calculated from the conservation laws of energy and angular
momentum. Details of the calculation can be found in Chapter 6. Here we give the resulting
formula:

∆v = vc

(
1−

√
2

1 + r0/R

)
. (3.1)

Here vc is the circular velocity of the space station, r0 is the radius of this orbit, and R is the
earth’s radius (more exactly, radius of the earth together with the atmosphere).

In the case of a low circular orbit, whose height h over the earth is small compared to the earth’s
radius (h ¿ R), the exact equation, Eq. (3.1), can be replaced by an approximate expression:

∆v = vc
h

4R
. (3.2)

For example, if the height h of the circular orbit equals 0.2 R ≈ 1270 km, the additional velocity
∆v, according to Eq. (3.2), must be about 5% of the circular velocity. (The calculation on the
basis of Eq. (3.1) with r = R + h = 1.2 R gives a more exact value of 4.65%).

This method of descending from a circular orbit (with the help of a backward impulse) requires
the absolutely minimal amount of rocket fuel. However, it is also very sensitive to small variations
in the value of the additional velocity. In the ideal situation, if the additional velocity has exactly
the required value given by Eq. (3.1), the point of landing is near the perigee P of the ellipse (see
Figure 3.1). During the descent, the landing module covers just one half of the ellipse (from A to
P ) while the station covers a little less than half its circular orbit. At the moment of landing, the
station is above and a little behind the module (point S in Figure3.1).

The right-side part of Figure 3.1 shows the descent of the module in the frame of reference
associated with the orbital station. At first the landing module actually moves in the direction
of the additional velocity, but very soon its relative velocity reverses. Gradually descending, the
module moves forward, leaving the station behind.

The sensitivity of this method to variations in the additional velocity means that if the actual
magnitude of the additional velocity is slightly greater than the required value, the point of landing
moves considerably from the idealized perigee (point P ) towards the starting point A. And if the
velocity ∆v is smaller than required, the perigee of the elliptical orbit occurs above the dense
strata of the atmosphere, and the space vehicle may stay in the orbit for several loops more.
Because there is considerable air resistance near perigee, the apogee gradually descends after each
revolution. The orbit approaches a low circle, evolving as described in the Section “Missiles and
Satellites.” Eventually the space vehicle enters the dense atmosphere and lands. However, it is
almost impossible to predict when and where this landing occurs.

If the additional velocity imparted to the space vehicle at point B of the initial circular orbit
(Figure 3.2) is directed radially (transverse to the orbital velocity), both the magnitude and direc-
tion of the velocity change. Therefore, the new elliptical orbit intersects the original circular one
at this point B. For a soft landing, the new elliptical trajectory of the descent must also graze the
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Figure 3.2: Descending elliptical trajectory of the landing module after given a downward additional
velocity at point B (left), and the descent of the module as it appears to the astronauts on the
orbital station S (right).

earth (the upper atmosphere) at the perigee P of the ellipse. Using the laws of energy and angular
momentum conservation (see Chapter 6) and requiring that the perigee distance rP be equal to
the earth’s radius R, we find that the necessary additional velocity ∆v for this method of landing
is given by

∆v = vc
h

R
. (3.3)

Here vc is the circular velocity for the original orbit, h is its height above the surface (above the
atmosphere), and R is the earth’s radius (including the atmosphere). Comparing this expression
with Eq. (3.2), we see that for this method of transition to the landing trajectory, the required
additional velocity is approximately four times greater than that for the first method. For example,
it must equal 20% of the circular velocity, if the height h of the circular orbit is 0.2 R. The angular
distance between the starting point B and the landing point for this method equals 90◦ (a quarter
of the revolution), in contrast to the first method, for which the angular distance between the point
of transition from the circular orbit to the descending trajectory and the landing point is twice as
large (half a revolution).

Figure 3.2 also shows position S of the orbital station at the moment of landing. We can see
that the station is above and some distance behind the landing module since for the moment of
landing the station has not completed a quarter of its revolution beyond the initial point B.

The right side of Figure 3.2 shows the landing trajectory in the frame of reference associated
with the orbital station. At first the astronauts on the station see that the landing module really
moves downward, in the direction of the additional velocity imparted by the on-board rocket engine.
However, soon the trajectory bends forward, in the direction of the orbital motion of the station.
The landing module in its way towards the ground moves forward, leaving the station in its orbital
motion far behind.

Strange as it may seem, we can transfer the space vehicle to a landing trajectory by a transverse
impulse directed vertically upward as well as downward (Figure 3.3). In this case, starting from
the point B of transition to the elliptical orbit, the landing module first rises higher above the
earth. Only after it passes through the apogee A of the orbit does it begin to descend toward point
P (the perigee of the orbit), at which it enters the atmosphere. The angular distance between
the starting and the landing points (B and P , respectively) in this case equals 270◦, that is, three
quarters of a revolution. During this time, the orbital station covers almost a whole revolution,
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Figure 3.3: Elliptical trajectory of the landing module after acquiring an upward additional velocity
at point B (left), and the trajectory of the module as it appears to the astronauts on the orbital
station S (right).

and at the moment the vehicle lands, it is far beyond the landing point.
The trajectory of the landing module as it is seen by the astronauts in the orbital station is

shown in the right side of Figure 3.3 (for the case of h = 0.3 R). The module first moves upward,
in the direction of the additional velocity, but soon turns backward. Its relative motion becomes
retrograde, and the landing module lags behind the station. After circling more than a quarter of
the globe in the retrograde direction, the module’s motion reverses direction. The module then
descends, approaching the earth’s surface tangentially.

For an elliptical orbit that is to graze the earth, the magnitude of the additional velocity must
be the same for both the downward and upward directions of the impulse. We can easily see this
point either from the laws of the conservation of energy and angular momentum (the corresponding
equations are the same for both cases), or from considerations based on the symmetry between the
two cases: For if the goal is to land the module at some point P of the earth’s surface (Figure 3.2),
we must make a transition from the initial circular orbit to an elliptical orbit for which point
P is the perigee. The orbits intersect at two points B and C. The transition is possible either
at B using a downward impulse, or at a symmetrical point C using an upward impulse of equal
magnitude.

Questions and Problems

1. Landing with minimal fuel consumption. Explain why the most economical way of
transiting from a circular orbit to the landing trajectory is provided by the backward impulse
of the additional velocity.

2. Additional impulse required for the maneuver. Using the laws of conservation of
energy and angular momentum (Kepler’s second law), calculate the additional backward
velocity ∆v required to transit from a circular orbit to the landing trajectory. Express your
answer in terms of natural quantities (for the problem under consideration), namely, in terms
of the circular velocity vc for the original orbit, radius r of the orbit, and radius R of the
planet.

3. Descent from a low circular orbit. For the case of a low circular orbit (h = r−R ¿ R),
simplify the expression for ∆v obtained above. In the approximate formula hold terms linear
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and quadratic in small parameter h/R. Verify the approximate formula in the simulation
experiment.

4. Landing on a planet with an atmosphere. Investigate experimentally the influence
of atmospheric drag experienced by the landing module on the position of landing point.
Try varying the height of the atmosphere and the air-drag coefficient that characterizes the
landing module.

5. Trajectory of the landing module relative the orbital station. Explain the shape
of the trajectory of the landing module in the reference frame associated with the orbital
station. This trajectory is displayed in the additional window “Relative motion” (see right
side of Figures 3.1 and 3.2).

6. Downward additional impulse for the landing module. On the basis of the laws
of the conservation of energy and angular momentum, calculate the additional velocity ∆v
that must be imparted to the landing module in the downward vertical direction in order
to transfer the module to the landing trajectory . Express the answer in natural units—the
circular velocity vc for the initial orbit and the ratio h/R of the height of the orbit to the
earth’s radius.

7. Landing after an upward additional impulse. Explain why the additional velocity im-
parted to the landing module in the upward vertical direction must have the same magnitude
∆v as in the preceding case in order to obtain a trajectory that also grazes the surface of the
earth. Explain the shape of the trajectory observed in this case by the astronauts from the
orbital station (right part of Figure 3.3).

3.2.2 Relative motion of bodies in space orbits

The simulation program that displays the relative motion of orbiting bodies allows us to get an
impression of the free motion of any body that is ejected from the orbital station. It is essential
for this problem that the initial velocity of the body relative to the station be small compared to
the orbital velocity of the station. For example, what does the motion of a body thrown down
towards the earth look like for the astronauts on the orbital station?

Our thinking about this problem may pass through several stages.
The first stage is likely to be governed by jumping too quickly to a conclusion: Relying on

our everyday experience, we find nothing strange if the body thrown toward the earth simply falls
rapidly toward the ground.

The second stage begins with a reflection that the orbital station travels over the earth at a
great speed—more than seven kilometers per second! What is the initial velocity of the body that
is thrown from the moving station by an astronaut? A healthy man can throw a stone with a
speed of about 10 – 20 m/s.

Considering the motion of the body relative to the earth, we should add vectorially the velocity
of the orbital station to the velocity of the body with respect to the station. We see that the
resulting velocity of the body differs only negligibly in magnitude and direction from the velocity
of the station. This means that after being thrown, the body simply transfers to another orbit
around the earth, and this new orbit is almost indistinguishable from the orbit of the station.
Does this conclusion agree with the first conclusion, that the body rapidly recedes from the station
toward the earth?

Next our speculations pass over to the third, exploratory stage. We recall reasonably that the
question is concerned not with the motion of the body relative to the earth, but rather with the
motion as it is seen by the astronauts on the station. In other words, we should investigate the
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motion of the body in the frame of reference associated with the orbital station. The simulation
program allows us to observe this relative motion on the computer screen (Figure 3.4).

Figure 3.4: Motion of the body thrown from the orbital station down toward the earth, as this
motion is seen from the earth (left) and from the orbital station (right).

In the right side of the figure we see that relative to the station the body indeed moves at first
downward, in the direction of the additional velocity. However, soon the trajectory turns forward,
then upward and backward, and finally the body returns to the station from the opposite side
(from above), tracing an almost closed trajectory!

To explain the physical reasons of the relative motion of the orbiting bodies, we should consider
first the motion of the body and the station relative to the earth. This motion is shown in the
left side of Figure 3.4. Because of the additional velocity directed towards the center of the earth
which the body received at point B, the ejected body transfers to an elliptical orbit of a very small
eccentricity. One of the foci is located at the center of the earth, and the second—at a point F
that is very close to the center. This ellipse almost merges with the circular orbit of the station.
We can barely see that only near perigee P (Figure 3.4) is the ellipse slightly inside the circle.
Near apogee A it is slightly outside the circle. With great precision we can treat this ellipse as a
circle of the same radius, whose center is displaced from the center of the earth towards F through
the distance half way to F .

Since the diameter of the circle and the major axis of the ellipse are almost equal, the periods
of revolution for the station and for the body, according to Kepler’s third law, are nearly equal.
Both trajectories intersect one another at the initial point B and at the opposite point C. At this
point, the body is again at the same height as is the station. The station comes to this point C
after exactly half the period of its uniform rotation around the earth.

However, the motion of the body along its elliptical orbit is slightly non-uniform: in accordance
with Kepler’s second law, the body comes to point C a bit earlier than the station, since at the
middle of this half of its orbit the body passes through the perigee P , where its speed is slightly
greater than that of the station. As a result, at the common point C of both orbits the body is
in front of the station. At this moment the distance between the body and the station reaches a
maximum.

During the second half of the revolution, the body passes through the apogee A of its elliptical
orbit. Because its speed decreases slightly in this part of the orbit, the body comes to the common
initial position almost simultaneously with the station, approaching it from above. Hence, the
motion of the body relative to the station occurs along an almost closed trajectory. One cycle of
this motion is completed during a period of revolution of the station in its circular orbit.

Are the astronauts on the orbital station really able to observe this periodic motion of the
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body? Here we get over to the fourth stage of our investigation—to calculations. Let us next
evaluate the linear dimensions of the almost closed loop covered by the body in its motion relative
to the station (see the right side of Figure 3.4).

As we already mentioned, the geocentric elliptical orbit of the body can be approximated by a
circle whose center is displaced from the center of the earth along the major axis PA through the
half-distance between the foci. We can easily evaluate this displacement ∆x, taking into account
that the vectors of velocities for both orbits at the point of their intersection B are perpendicular
to the corresponding radii. (Neither these vectors nor the radii are shown in Figure 3.4, since
the angle ∆v/vc between them is so small that they merge on the image.) Consequently, the
displacement of the center equals the radius r0 of the circle times the angle ∆v/vc between the
velocities of the body and the station at point B (or at point C): ∆x = r0(∆v/vc).

The divergence between the two orbits is greatest near points P and A (Figure 3.4) and just
equals the displacement ∆x of the center calculated above. Hence, the lowest point P of the
elliptical orbit is lower than the circular orbit of the station by the distance ∆x, and the highest
point A is higher by the same distance ∆x. Consequently, the vertical size of the loop in the right
side of Figure 3.4 (the minor diameter of the relative trajectory) equals 2∆x = 2r0(∆v/vc).

We are now ready to make a numerical estimate of a typical size of the trajectory that the
body traces relative to the orbital station. Let, for instance, the height of the circular orbit of
the station be h = 0.1 R ≈ 640 km (radius of the orbit r0 ≈ 7 thousand kilometers, period of
revolution T ≈ 98 minutes), and the relative initial velocity of the body be ∆v = 15 m/s, that
equals approximately 0.2% of the orbital velocity vc = 7.5 km/s. In this case the minor diameter
of the relative trajectory equals 2∆x = 2r0(∆v/vc) ≈ 28 km. This value gives an idea of the actual
sizes of the loop in Figure 3.4.

It is unlikely that the astronauts would be able to see a small body at a distance of more than
a kilometer. Therefore they can watch it only during the first part of its nearly closed trajectory.
Most likely, they lose sight long before the deviation from its rectilinear downward motion becomes
apparent. Thus, until the astronauts lose sight of the body, it simply falls down towards the ground,
moving in the direction of the relative initial velocity imparted to the body by the astronaut!

It is also interesting to calculate the size of the relative trajectory in the horizontal direction.
As mentioned above, the major diameter of the loop equals the lag of the station behind the body
near the common point C (see the left side of Figure 3.4) of their orbits. With the help of Kepler’s
second law, we can calculate the difference ∆T of time intervals needed for the station and for the
body to cover the half-orbit between common points B and C.

For the station, the area A swept out by the radius-vector in its rotation from B to C during the
time T/2 is exactly half a circle: A = πr2

0/2. For the body, whose nearly circular orbit is displaced
from the earth’s center through ∆x, the corresponding area is smaller by ∆A = 2r0∆x = 2r2

0∆v/vc.
Hence ∆T/(T/2) = ∆A/A = 4(∆v/vc)/π, and ∆T = 4(r0/vc)(∆v/vc) (since T = 2πr0/vc). Thus,
for the maximal lag lmax of the station behind the body at point C we obtain:

lmax = vc∆T = 4r0
∆v

vc
. (3.4)

Consequently, the major diameter of the almost closed trajectory of the body in its motion
relative to the station is twice its minor diameter. For the values that we used above (the height of
the station h = 0.1 R ≈ 640 km, the relative initial velocity of the body ∆v = 15 m/s, that equals
approximately 0.2% of the orbital velocity vc = 7.5 km/s), the maximal distance lmax of the body
from the station is approximately 56 km.

Chapter 7 contains a detailed derivation of the approximate differential equations that describe
analytically the relative motion of a body in the vicinity of the orbital station. For the given initial
conditions (a small relative velocity directed downward), the particular solution of the equations
predicts the relative motion to be along an elliptical loop stretched horizontally. The semiminor
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axis l of the ellipse equals the radius of the circular orbit r0 times the ratio of the additional
velocity ∆v to the orbital velocity vc, namely l = r0(∆v/vc). The semimajor axis of the ellipse is
twice as long. This result is exactly consistent with the estimate of the vertical size of the relative
orbit considered above, as well as with the estimate of maximal distance lmax between the body
and the station, given by Eq. (3.4).

Figure 3.5: Motion of the body thrown from the orbital station in the direction of the orbital
motion, in the frames of reference of the earth (left) and of the orbital station (right).

The character of the relative motion of the body thrown from the orbital station is quite different
if the relative initial velocity has a component parallel to the orbital velocity of the station. The
trajectory of the relative motion is no longer a closed curve even for very small values of the initial
relative velocity. The body does not return to the station. In the relative motion, along with
the periodic components, there is a non-periodic secular term, responsible for the regular, steady
receding of the body from the station.

Figure 3.5 illustrates the trajectory of the relative motion of the body that is thrown forward
from the orbital station. At first the body actually moves forward, but gradually it deviates
upward, and soon its motion relative to the station becomes retrograde. The body next descends,
and the trajectory makes a loop. The body periodically returns to the same height as the station,
but with each return lags more and more behind the station.

The general character of this relative motion is easily explained with the help of the geocentric
frame of reference. The new orbit of the body is an ellipse grazing the circular orbit of the station
only at the initial point P , which is the perigee of the elliptical orbit. Passing through the apogee
A, the body is higher than the station. Approaching the perigee P , the body descends to its initial
altitude. But the period of revolution along the ellipse is greater than the period of the station.
Therefore after a revolution the body arrives at the only common point P of the two orbits later
than does the station. This lag increases with each revolution. If the initial velocity of the body
is such that the ratio of its period to that of the station is rational, the accumulated lag sooner or
later becomes equal to the length of the whole orbit (or to several lengths of the orbit), and the
body periodically meets with the station.

For small values of the initial relative velocity, it is possible to analyze the motion with the help
of approximate differential equations that describe the relative motion of the body in the vicinity
of the orbital station. Chapter 7 includes a derivation of the equations and their particular solution
for the case under consideration.
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3.2.3 A space probe and the relative motion

As another example of a problem in which examining the relative motion of orbiting bodies is
essential, we consider a space probe—an automatic or manned module with scientific instruments
that is launched from a station circularly orbiting the earth or some other planet. The module is
to approach the surface of the planet in order to explore it from a low altitude. Then the module,
with the scientific information it has collected, is to return to the orbital station and gently dock
to it. Or, as another assignment, the space probe is to investigate far off regions of interplanetary
space. In either case, its orbit must be chosen so that its rendezvous with the station is possible
after it has completed its tasks.

Are such orbits possible? If so, how can they be realized?
After the space probe is undocked from the station, its passive motion around the planet occurs

along a new elliptical orbit. What requirements must this new orbit satisfy? If the probe is to
investigate the surface of the planet, its orbit must approach the planet as closely as possible.
Consequently, the orbit must have a low perigee (pericenter, for a planet in general), but must
not intersect the surface (more precisely, the atmosphere) of the planet. Moreover, the period of
revolution along such an elliptical orbit must be related to the period of revolution of the orbital
station along its circular orbit in such a way that the probe and station periodically meet one
another. Such a rendezvous can occur only at a common point of their orbits if their periods of
revolution are in the ratio of integers, preferably small. For example, if the period of revolution of
the probe is 2/3 the period of the station, the station completes two revolutions while the probe
completes three. Thus the two meet at the common point of their orbits every two revolutions of
the station after the departure of the probe.

After the probe is undocked from the station, it moves along almost the same circular orbit and
with the same velocity as does the station. In order to launch the probe into a required elliptical
orbit, we should impart to it some additional velocity by means of an on-board rocket engine.
From the point of view of rocket fuel expenditures, the most economical method of transition to a
suitable orbit consists of imparting to the space probe an additional velocity tangent to its circular
orbit. If the additional velocity is directed opposite to the orbital velocity of the station, we get
an inner elliptical orbit that grazes the circular orbit of the station only at the orbital position at
which the rocket engine thrusts the probe backward.

Let us consider the family of possible inner orbits.
The space probe encounters the orbital station each time the station completes a revolution if

the period T of the probe equals T0/n, where T0 is the period of the station, and n is an integer.
However, there is actually only one such possibility, namely, n = 2. Elliptical orbits with periods
that equal T0/3, T0/4, T0/5, . . . do not exist. The reason is that the shortest possible period
of revolution corresponds to the degenerate elliptical orbit with the minor axis of zero length (a
straight-line ellipse with foci at the center of the planet and at the initial point, and with a major
axis equal to the radius of the circular orbit). According to Kepler’s third law, this minimal period
equals (1/2)3/2T0 ≈ 0.35 T0, a value greater than T0/3.

For the elliptical orbit with the period T = T0/2, the perigee distance rP equals 0.26 rA, where
rA is the apogee distance that equals the radius r0 of the circular orbit of the station. Hence, the
orbit can be realized only if the radius of the circular orbit is at least four times the radius of the
planet. The characteristic velocity ∆v needed to transfer the space probe to this orbit from the
initial circular orbit equals 0.36 vc, that is, 36% of the circular velocity vc. The formulas necessary
for such calculations can be easily obtained on the basis of Kepler’s laws and the law of energy
conservation. The derivation of the formulas is given in Chapter 6. The elliptical orbit of the space
probe whose period equals 2/3 of the station period is shown on the left side of Figure 3.6. In this
case a backward characteristic velocity ∆v of approximately 0.17 vc is required. At point A the
space probe is undocked from the station and the additional velocity ∆v is imparted to it by an
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Figure 3.6: Elliptical orbit of the space probe with the period 2/3 T0 (left) and the trajectory of
the space probe in the reference frame associated with the orbital station (right).

on-board rocket engine. At the perigee P of the elliptical orbit the distance rP from the center of
the planet equals approximately 0.53 r0. Hence, the orbit is ideal for a space probe if the circular
orbit of the station has a radius approximately twice the radius of the planet.

The right side of 3.6 shows the trajectory of this space probe in the rotating reference frame
associated with the orbital station (more exactly, with the straight line joining the station and
the center of the planet). For a while after the launch, the probe retrogrades in this frame in
the direction of the additional velocity ∆v. However, soon its trajectory turns first toward the
planet and then forward—the probe overtakes the station in its orbital motion. As a whole, the
trajectory of the probe bends around the planet in the same sense as the orbit of the station, in
spite of the opposite direction of the initial velocity. Near the apexes of the loops of the trajectory
the motion becomes retrograde. (These apexes correspond to the instants at which the space probe
passes through the apogee of its geocentric orbit.) Moving along this closed trajectory, the probe
approaches the surface of the planet three times. (At these instants the probe passes through the
perigee of its geocentric orbit.) To dock the space probe to the station after the voyage, we quench
the remaining relative velocity (to equalize the geocentric velocities of the probe and the orbital
station). This can be done by the same on-board rocket engine. The required additional impulse
(the characteristic velocity of the maneuver) is just of the same magnitude as at the launch of the
probe, but in the opposite direction: if at the launch the impulse is directed against the orbital
velocity of the station, now at docking it is directed forward.

Figure 3.7 illustrates the motion of a space probe with the period of revolution T = 3/4 T0.
In this case the probe meets the station at the initial point A after four revolutions around the
planet. The station completes three revolutions during this time. The trajectory of motion of the
probe relative to the orbital station has four loops that correspond to the instants at which the
probe passes through the apogee of its orbit.

If the additional velocity that is imparted to the space probe after its undocking from the station
is directed forward, the elliptical orbit of the probe envelopes the circular orbit of the station,
grazing it at the initial point. Figure 3.8 shows such outer elliptical orbits with the periods 2T0

and 3/2 T0 (orbits 1 and 2, respectively). The right side of the figure shows the relative trajectories
of the probe for these cases. At first the probe moves relative to the station in the direction of
the initial velocity, but very soon its trajectory turns upward and then backward, and the motion
becomes retrograde—the probe lags behind the station. In this frame, the trajectory of the space
probe bends around the planet in the sense opposite to the orbital motion of the station.

The trajectory with the period T = 2T0 requires the additional velocity ∆v = 0.17 vc, directed
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Figure 3.7: Elliptical orbit of the space probe with the period 3/4 T0 (left) and the trajectory of
the space probe in the reference frame associated with the orbital station (right).

Figure 3.8: Elliptical orbits of the space probes with the periods 2T0 and 3/2 T0 (left), and the
corresponding trajectories in the reference frame associated with the orbital station (right).

forward. The apogee distance rA (the maximal distance from the center of the planet) equals
2.17 r0 (r0 is the radius of the circular orbit). The closed orbit of the relative motion (curve 1 in
Figure 3.8) is covered during 2T0, that is, during two periods of revolution of the station.

For the orbit with the period T = 3/2 T0, the additional velocity is approximately 0.11 vc,
and the apogee distance is 1.62 r0. The closed orbit of relative motion (curve 2 in Figure 3.8)
has two small loops, corresponding to the instants at which the probe passes through the perigee
of its geocentric elliptical orbit. The whole closed path of the relative motion corresponds to
two revolutions of the probe along the geocentric elliptical orbit, covered during three periods of
revolution of the station.

In order to investigate both the surface of the planet and remote regions of the interplanetary
space by the same space probe, we can use an elliptical orbit obtained by imparting to the probe a
transverse additional impulse. An example of such an orbit with the period of revolution T = 3/2 T0

is shown in Figure 3.9. At point B of the initial circular orbit the probe is undocked from the
station, and the on-board rocket engine imparts a downward additional velocity ∆v. The required
magnitude of ∆v (the characteristic velocity of the maneuver) can be calculated on the basis of
Kepler’s laws and the law of conservation of energy. The corresponding calculation is found in
Chapter 6. To obtain the orbit with the period T = 3/2 T0, a rather large characteristic velocity of
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0.487 vc is necessary. (This value is several times larger than the tangential additional velocity of
0.11 vc needed for the elliptical orbit of the same period and the same major axis.) During three
revolutions of the station, the space probe makes two revolutions along its elliptical orbit, and
they meet at the initial point B. To dock softly the space probe to the station, another additional
impulse from the rocket engine is required. To equalize the orbital velocities, an additional velocity
of the same magnitude ∆v as at the launch must be imparted to the space probe, but now it should
be directed radially upward. The relative motion of the space probe in this case is shown in the
right part of Figure 3.9. In the reference frame associated with the station, the space probe covers
its convoluted closed path during three revolutions of the station around the planet.

Figure 3.9: Elliptical orbit of a space probe with the period 3/2 T0 (left) and the corresponding tra-
jectory in the reference frame associated with the orbital station (right) in the case of a transverse
additional impulse.

Let us consider one more example of space maneuvers. Imagine we need to launch a space
vehicle from the orbital station into the same circular orbit as that of the station, but there is to
be an angular distance of 180◦ between the vehicle and the station. In other words, they are to
orbit in the same circle but at opposite ends of its diameter. How can this be done?

The task cannot be solved by a single maneuver. The on-board rocket engine must be used
at least twice. With two impulses we can transfer the space vehicle to the opposite point of the
circular orbit using an intermediate elliptical orbit with the period of revolution, say, 3/2 T0 or
3/4 T0. In the first case, after undocking from the station, an additional velocity ∆v = 0.11 vc is
imparted to the space vehicle in the direction of the orbital motion. During one revolution of the
space vehicle along its elliptical orbit (curve 2 in Figure 3.8), the station covers exactly one and a
half of its circular orbit. That is, the space vehicle reaches the common point P of the two orbits
(circular and elliptical) just at the moment when the station is at the diametrically opposite point
of the circular orbit.

In the relative motion, shown in the right part of Figure 3.8, the space vehicle has covered one
half of its closed path 2. At this moment, we quench the excess of velocity of the space vehicle over
the value vc by a second jet impulse, and the vehicle moves along the same circular orbit as the
station but at the opposite side of the orbit. In the window of the simulation program that displays
the relative motion, the space vehicle is stationary at the antipodal point. Clearly the second jet
impulse must be of the same magnitude as the first one but opposite to the orbital velocity).
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Questions and Problems

1. Relative motion after a vertical initial velocity. An astronaut of an orbital station
throws a small stone vertically upward with a velocity of 10 m/s relative to the station that
moves in a circular orbit at an altitude of 0.1R (R = 6400 km is the earth’s radius.) What
is the trajectory traced by the stone relative to the station? Calculate the maximal distance
of the stone from the orbital station.

2. Relative motion after a horizontal initial velocity. An astronaut throws a stone with
an initial velocity of 10 m/s directed perpendicularly to the plane of the circular orbit of the
station that moves in a circular orbit at an altitude of 0.1R (R is the earth’s radius.) What
is the trajectory traced by the stone relative to the station? Calculate the maximal distance
of the stone from the orbital station.

3. (*) To reach and catch up, we should brake. An orbital station moves around the
earth in a circular orbit. A spacecraft is launched to dock to the station, but because of a
delay at the launch, the craft moves into the same circular orbit some distance L behind the
station. This distance is small compared to the radius r of the orbit (L ¿ r). In order that
the spacecraft reach the station after one revolution along the orbit, an additional rocket
impulse is required.

(a) What should be the direction of the impulse? Calculate the additional velocity ∆v that
must be imparted to the craft. Express it in terms of the distance L and the period T of
revolution of the station. Also express ∆v in terms of the orbital velocity of the station vc

and the ratio L/r.

(b) When the craft reaches the station, one more rocket impulse is required to equalize their
velocities for soft docking. What is the additional velocity required for this maneuver?

(c) Repeat parts (a) and (b) for the case in which the spacecraft is to approach and dock to
the station after two revolutions of their orbit.

(d) Repeat parts (a) and (b) for the case in which the spacecraft is in front of the station a
distance of L (L ¿ r).

3.2.4 Rendezvous in space orbits and interplanetary flights

Next we discuss the space maneuvers that can transfer a space vehicle from one circular orbit to
another.

Suppose we need to launch a space vehicle from the orbital station into a circular orbit whose
radius is different from that of the space station. After remaining in this new orbit for a while,
the space vehicle is to return to the orbital station and dock to it. What maneuvers must be
planned to execute this operation? What jet impulses are required for optimal maneuvers? What
characteristic velocities must the rocket engine provide?

Designing such transitions between different circular orbits can be related to interplanetary
space journeys. The orbits of the planets are almost circular, and to a first approximation they
lie in the same plane. In a sense, planets are stations orbiting the sun. Sending a space vehicle
from one planetary orbit to another differs from the problem suggested above only in that the
planets (unlike actual stations) exert a significant gravitational pull on the space vehicle. But
since masses of the planets are small compared to the mass of the sun, the gravitational field of
a planet is effective only in a relatively small sphere centered at the planet. (Chapter 7 discusses
details). Outside this sphere of gravitational action of the planet the motion of a space vehicle
(relative to the heliocentric reference frame) is essentially a Keplerian motion governed by the sun.
In this sense the problem of interplanetary flights is quite similar to the problem to be discussed
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here. The only difference is that in the case of interplanetary flights the additional velocity needed
to simulate a maneuver on the computer should be treated as the velocity with which the space
vehicle leaves the sphere of gravitational action rather than the surface of the planet.

The most economical way to jump between two circular orbits (with respect to the required
rocket fuel expenditures) is a semielliptic trajectory that grazes the inner orbit from the outside
and the outer orbit from the inside. Such a transition is called semielliptic or Hohman’s transition
after W.Hohman, a German scientist who was the first to suggest it for interplanetary flights.

Figure 3.10: Semielliptic transition of a spacecraft to a higher circular orbit with subsequent return
to the orbital station.

As a particular example, we next consider the voyage of a spacecraft from an orbital station
that moves around a planet in an inner circular orbit of radius r0 to an outer circular orbit of radius
2r0. After remaining in this new orbit for a while, the spacecraft returns to the orbital station.
Figure 3.10 illustrates the maneuvers. At point P1 the space vehicle is undocked from the station
and the on-board rocket engine imparts to the vehicle an additional velocity ∆v1 in the direction of
the orbital motion. In order to acquire an apogee of 2r0 for the transitional semielliptic trajectory,
the additional velocity ∆v1 must equal 0.1547 vc, where vc is the orbital velocity of the station.
The calculation of the required additional velocity ∆v1 on the basis of the laws of conservation
of the energy and angular momentum is given in Chapter 6, Section “Space Rendezvous.” When
the space vehicle reaches the apogee (point A1) of the ellipse, a second tangential impulse ∆v2 is
required to increase the velocity to the value vcirc, in order to place the space vehicle in the outer
circular orbit.

An additional velocity of the same magnitude ∆v2 but directed opposite to the orbital velocity
is required to transfer the space vehicle to a semielliptic trajectory that can bring it back to the
station. However, when the orbital station is to be the target, another important consideration
is timing: The station must be in the right spot in its orbit at just the moment when the space
vehicle arrives. Therefore the instant and the point A2 at which the maneuver is carried out must
be chosen properly in order that the space vehicle reach the perigee P2 simultaneously with the
station. To calculate a suitable time, we can use Kepler’s third law. (Chapter 6 gives details.) To
equalize the velocity of the space vehicle with the velocity of the station, one more rocket impulse
is required. It is obvious that now the required additional velocity has the same magnitude ∆v1

as it does for the very first maneuver.
The right side of Figure 3.10 illustrates the motion of the space vehicle in the frame of reference

associated with the orbital station. We note that between points A1 and A2 the space vehicle
covers more than one revolution around the station in its retrograde relative motion, while in the
planetocentric motion between the corresponding points A1 and A2 (left side of Figure 3.10) it
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covers less than one revolution.

Questions and Problems

1. Semielliptical transitions between circular orbits. Explain why the semielliptic trajec-
tory (Hohman’s transition) provides the most economical way (with respect to the required
rocket fuel expenditures) to transfer a spacecraft from one circular orbit to another circular
orbit of a different radius.

2. (*) Characteristic velocities. For the maneuvers discussed above in this section, calcu-
late the values ∆v1 and ∆v2 of the additional velocity required to transfer the spacecraft
between the circular orbits and semielliptic transitional trajectories. Express the values of
the characteristic velocities in units of the circular velocity of the space station.

3. (**) Chronometry of the maneuvers. Calculate the moment t2 (assuming t1 = 0 for
the first maneuver) at which the spacecraft reaches the apogee A1 of the first semielliptic
transitional trajectory, and the second maneuver should be executed. Express t2 in units of
the period T0 of revolution along the original circular orbit (orbit of the station). Calculate
also a suitable moment t3 for the maneuver of transition to the semielliptic return trajectory,
in order the spacecraft reached the point of tangency with the circular orbit of the station
just at the moment when the orbital station arrives at this point. Calculate t3 for cases in
which the spacecraft stays in the outer circular orbit more than half-revolution and more
than a whole revolution. What should be the time t4 for the final maneuver of equalizing the
velocities and docking to the station? Verify your calculations by the simulation experiment.



Chapter 4

Precession of an Equatorial Orbit

The shape of the earth is only approximately a sphere. Our planet bulges slightly at the equator
so that it is very nearly an oblate spheroid whose equatorial radius is about 21 km greater than
its polar radius.

Hence the gravitational field of the earth is not exactly a spherically symmetric field. For
distances considerably greater than the earth’s radius, the gravitational field can be treated as if it
were created by a massive sphere with an additional massive belt surrounding the earth along the
equator. By virtue of this belt, an additional term (called a perturbation) appears in the expression
for the gravitational force experienced by a satellite, a term that decreases much more rapidly with
increasing distance than does the unperturbed force.

The distortion of the earth’s gravitational field from spherical symmetry causes the actual orbit
of a satellite to differ from an ellipse. The surprisingly simple Keplerian closed orbits vanish. The
real trajectory is a complex curve, generally not closed and not lying in a plane. After a revolution,
the satellite does not return to the same spatial point. However, because the distortions of the
gravitational field are small, it is convenient to consider the satellite to be orbiting the earth along
a Keplerian ellipse whose parameters and orientation are continuously changing. Such an ellipse
with gradually varying parameters is called an osculating orbit.

For a very distant satellite, the exact distribution of the earth’s mass is insignificant. In other
words, to a first approximation the gravitational force behaves as if all the earth’s mass were
concentrated at the earth’s center. This characteristic is reflected in the fact that the perturbation
in the expression for the force falls of with the distance much faster than does the principal
inverse square term. For large enough distances from the earth, this additional term is inversely
proportional to the fourth power of the distance and thus goes to zero with increasing distance
much more rapidly than does the inverse square term.

Furthermore, the additional force of attraction by the massive equatorial belt generally is not
directed toward the center of the belt. In other words, the actual gravitational field of the earth
is not exactly a central field. It possesses axial symmetry rather than spherical symmetry. Due
to this lack of spherical symmetry the plane of a non-equatorial orbit gradually rotates in space.
Since the angle between the plane of the orbit and the earth’s axis remains constant, the motion
of the plane is a slow precession about the earth’s axis.

However, in the equatorial plane the perturbing force does point toward the center of the earth.
The motion of an equatorial satellite occurs under a gravitational force that is central but that has
a dependence on distance which differs from that of a spherically symmetric planet. We can show
with the help of the law of universal gravitation and the principle of superposition that for large
enough distances r from the center of the planet the force of attraction in the equatorial plane can
be written as follows:
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Fr = −G
mM
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. (4.1)

Here R is the radius of the planet, M is its mass, and G is the universal gravitational constant.
A dimensionless parameter b characterizes the degree of oblateness of the planet’s shape. For
example, if we assume that some mass ∆m of the total mass M is concentrated in the equatorial
belt surrounding the planet, parameter b is positive and equals (3/4)∆m/M (see Chapter 7). For
the earth, the deviation of the shape from a sphere is small, so that its oblateness is characterized
by b = 0.0016 in the perturbational term of Eq. (4.1).

Since the force depends only on the distance r, the trajectory of an equatorial satellite is a
plane curve, though generally not a closed one.

As mentioned above, at very large distances from the earth the perturbation caused by the
oblateness is negligible, and the gravitational field decreases almost as the square of the distance
(see Eq. (4.1)). A satellite at such distances follows a Keplerian orbit. However, if the eccentricity
of this ellipse is large enough, that is, if the ellipse is highly flattened and its perigee is much closer
to the earth than apogee, the influence of the earth’s distortion at perigee can be significant. The
force of attraction of the planet near perigee is greater than it would be in the absence of the
perturbation.

Because of this additional attraction, at small distances from the planet the curvature of the
trajectory is greater than in the unperturbed motion. The increased curvature in the perigee causes
the major axis of the ellipse to turn in the direction of the orbital motion. We can imagine the
evolution of the orbit as a slow continuous rotation of the major axis in the equatorial plane. This
rotation is non-uniform. It slows down at large distances, when the satellite moves near apogee,
and speeds up when the satellite passes through perigee of the ellipse.

Furthermore, the osculating ellipses for different points of the actual trajectory differ not only
by the orientation of their major axes, but also by other parameters. In particular, the major
axis of the osculating ellipse is smaller at apogee than at perigee. However, in contrast to the
orientation of the ellipse that steadily turns in the same sense as the satellite is orbiting, variations
in the other parameters occur periodically. As a result, for the complicated trajectory generated
by this rotation and varying length of the major axis, the maximal and minimal distances of the
satellite from the planet do not change from one loop to the next.

For a satellite orbiting the earth, the major axis of its elliptical orbit turns only through a
very small angle during one revolution of the satellite. However, the effect accumulates after a
large number of revolutions around the earth. To make the precession of an elliptical orbit easily
observable in the computer simulation, we enter exaggerated values of the dimensionless parameter
b that characterizes the oblateness of the planet (up to b ≈ 1 instead of b = 0.0016) in the expression
for the gravitational force, Eq. (4.1).

The effect of precession is more evident for orbits with large eccentricities. To observe such flat-
tened orbits in the simulation experiment, we choose an initial velocity which differs considerably
from the circular velocity for the initial altitude. The trajectory of a satellite looks like a multi-
petalled flower whose leaves gradually fill out the annular (ring-shaped) region of the equatorial
plane enclosed between the two concentric circles corresponding to maximal and minimal distances
of the satellite from the planet. These circles are shown by dashed lines in Figure 4.1. Generally,
this filling of the annular domain is uniformly dense. However, when the period of rotation of the
major axis is an integral or rational multiple of the period of revolution (more exactly, multiple of
the period of radial motion) of the satellite, the orbit is closed and consists of several loops.

The program allows us to draw the osculating ellipse on the screen for any point of the ac-
tual complex trajectory of the satellite. To obtain the curve during the simulation, we click the
command-button “Pause” at the appropriate moment. If the option “Osculating ellipse” in the
menu item “Options” has been checked, the program calculates parameters of the ellipse for the
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Figure 4.1: Precession of the orbit of an equatorial satellite orbiting an oblate planet

current values of the position and velocity of the satellite, and shows the theoretically determined
ellipse on the screen. In Figure 4.1 such ellipses are shown (by thin lines) for three points (S, A,
and B) of the trajectory. By clicking the button “Go” we resume the simulation, and can compare
the actual trajectory with the curve analytically predicted for the unperturbed motion.

If the point for drawing the osculating ellipse is chosen rather far from the planet, the actual
motion follows this ellipse almost exactly until the satellite approaches perigee (the ellipses for
points S and B in Figure 4.1). Near perigee the actual motion deviates considerably from the
ellipse, and for the next loop of the trajectory the motion occurs approximately along an ellipse
whose major axis is turned in the direction of the orbital motion through a considerable angle.
If the osculating ellipse corresponds to some point that is not far from the planet (point A in
Figure 4.1), the actual motion occurs along the ellipse only in a near vicinity of this point, and
very soon deviates considerably from the predicted curve.

The deviation of the actual trajectory from the osculating ellipse appears very soon if the
moment for drawing the ellipse is chosen when the satellite approaches the planet, although the
satellite followed this ellipse well on its way towards the planet. In this case the ellipse gives a
good approximation for the actual motion during some way in front of the corresponding point of
the trajectory.

The osculating ellipse in the simulation experiment may be obtained by a different method.
If, before starting the simulation, we check the option “Unperturbed curve” in the menu item
“Options,” the program numerically calculates the further unperturbed motion for the next period
each time the “Pause” button is clicked. We emphasize that the displayed unperturbed motion is
not assumed by the computer to occur along an ellipse: The program calculates the unperturbed
motion only on the basis of the fundamental equations of motion just as it does for the actual
motion. At the moment the “Pause” button is clicked, the subsequent motion of the satellite (for
a period) is assumed to occur in the unperturbed spherically symmetric gravitational field, with
the initial conditions equal to the current values of the position and velocity. If both options
(Osculating ellipse and Unperturbed curve) are checked, after the “Pause” button is clicked, the
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program first draws the analytically predicted osculating ellipse, and then the unperturbed curve
obtained by the numerical integration of the equations of motion.

Among the possible equatorial trajectories in the perturbed gravitational field, for any initial
distance there exists always a closed circular orbit. Since the centripetal force is greater than for
the case of an undistorted planet, the velocity of a satellite in this circular motion must exceed the
circular velocity which is characteristic of the undistorted planet of the same mass. If we imagine
that the distortion suddenly vanishes, such a circular satellite would move after this moment along
an elliptical orbit with the perigee at the initial point, where this ellipse grazes the circle. In other
words, for the circular motion of a satellite under the perturbed gravitational force, the varying
osculating orbit is an ellipse whose major axis makes exactly one revolution during one period of
the perturbed circular motion. The satellite is always at the perigee of the osculating ellipse.

It is also interesting to consider the hypothetical case of a planet with the opposite distortion
of mass distribution, namely a planet whose shape is a prolate spheroid. In this case the additional
term in the expression for the gravitational force is negative (b < 0 in Eq. (4.1)), since the force of
attraction at small distances is less than for an undistorted planet of the same mass. To explain
this, we can imagine a planet with polar “hats” of snow and ice (as if some of the planet’s mass
were transferred to its poles), so that the gravitational field is created by a massive sphere and by
additional point masses at its poles. For any outer point in the equatorial plane, the distance to
the poles is greater than the distance to the center of the planet. The greater part of the planet’s
mass is transferred to the poles, and the greater the separation between these point masses, the
smaller the resulting force of attraction acting on a satellite in the equatorial plane at a given
distance from the center of the planet.

When an equatorial satellite passes through the perigee of its orbit, the gravitational attraction
by the dilated planet is insufficient to provide the curvature of the unperturbed trajectory. Such
straightening of the ellipse in its perigee is equivalent to a turn of the major axis through some
angle opposite the direction of the orbital motion.

Using the simulation program, we can draw the osculating unperturbed ellipse for any point of
the actual trajectory. The ellipse is generated each time we click the button “Pause” in the course
of the simulation, provided the corresponding menu item in “Options” is checked. The osculating
ellipse is obtained, depending on the option chosen, either by the numerical simulation of motion
under the unperturbed gravitational force, or by a theoretical calculation of the parameters of the
elliptical orbit for the current values of the velocity and position in the actual motion. We can also
choose both these options to verify the theoretical predictions by a numerical simulation.

If we generate the osculating ellipse at a time the satellite is moving away from perigee and is
sufficiently far from it, the satellite in the subsequent perturbed motion follows this ellipse almost
exactly until it again approaches the perigee, where its motion is subjected to the strongest of the
perturbations. When the osculating ellipse is generated for a point that is close to the perigee, the
osculating ellipse is not a good approximation of the subsequent perturbed motion.

We should keep in mind that the expression for the gravitational force generated by a distorted
planet (used for the simulation of motion in the computer program) is approximate and valid only
for rather large distances from the planet. For cases in which the trajectory closely approaches the
surface of a significantly distorted planet, the adopted mathematical model is inaccurate.

Questions and Problems

1. Gravitational field of an oblated planet. For a planet whose shape is an oblate spheroid,
why is the gravitational force exerted on a satellite in the equatorial plane at relatively small
distances stronger than for a spherically symmetric planet of the same mass? What can you
say about the gravitational force over the poles of the oblated planet? Is it greater or smaller
than for the spherically symmetric planet of the same mass?
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2. Gravitational field of a dilated planet. For a planet whose shape is a prolate spheroid,
why is the gravitational force acting upon a satellite in the equatorial plane smaller than for
a planet with a spherically symmetric distribution of the same mass? Is this true for the
gravitational force over the poles of the planet?

3. (**) Inverse forth-power fall-off of the additional force. Prove that the additional
term in the expression for the gravitational force created by an oblated or prolated planet at
large distances is inversely proportional to the fourth power of the distance. Use the model
of an equatorial massive belt for an oblated planet, and of point masses at the poles for
prolated planet.

4. Direction of the precession. For an oblated planet, explain qualitatively why the pre-
cession of an equatorial orbit occurs in the same sense as the orbital motion, while for the
prolated planet, the precession occurs in the opposite sense as the orbital motion of the
satellite.

5. (*) Maximal and minimal distances. Prove on the basis of the laws of the angular
momentum and energy conservation that the maximal and minimal distances of the equatorial
satellite from an axially symmetric distorted planet do not change from one revolution to
another in spite of the variations of the major axis of the osculating orbit.

6. Circular orbit around the non-spherically symmetric planet. Calculate the value
of velocity of the equatorial satellite orbiting an axially symmetric planet of mass M along
a circle of radius r if the distortion of the planet is characterized by a definite value of the
dimensionless parameter b.

7. (*) Osculating ellipse for a circular orbit. Explain why for a circular motion of an
equatorial satellite orbiting an axially distorted planet the osculating orbit is a rotating
ellipse. What is the angular velocity of this rotation? In which case is the satellite always
found at the perigee, and in which case at the apogee of the osculating ellipse?

8. (*) Maximal and minimal distances from the center. A satellite is launched with
some initial velocity v in the equatorial plane of a distorted planet transverse to the radius
vector whose length is r. Calculate the maximal and minimal distances of the satellite from
the center of the planet. The distortion of the planet is characterized by a dimensionless
parameter b.

9. A closed multi-petalled orbit. Using trial and error, find the initial conditions that
produce a precessing orbit that becomes a closed curve after several revolutions.



Chapter 5

Many-Body Systems

The motion of two bodies coupled by gravitational forces is simulated in the program “Double
Star.” When the bodies have comparable masses, such a physical system is a model of a binary
star whose components revolve about a common center of mass. The program shows that in the
inertial center-of-mass reference frame the bodies trace synchronously homothetic Keplerian orbits.

The most fascinating phenomena of celestial mechanics are revealed in investigating the motion
of a system of three or more bodies attracted to one another by gravitational forces. The systems of
three and more interacting bodies are simulated in several programs. Among these are the motion
of a satellite orbiting a planet that is orbiting a star; the motion of a planet in a double-star
system; and the motion of several planets orbiting a single star. The programs allow us to observe
and study many fascinating trajectories of three-body and many-body motion that challenge our
intuition and delight the eye.

5.1 Double Star—the Two-Body Problem

In the preceding programs the simulation of motion under the action of gravitational forces is
carried out under the assumption that the mass of the central body is much larger than the mass
of the orbiting body. Hence the more massive central body (the sun in the problem of the planetary
motion, or the earth in the problem of satellites orbiting the earth) can be approximately treated
as stationary, and the problem is reduced to the investigation of orbital motion of the less massive
body in the gravitational field of the other.

In the general case, when the masses of the interacting bodies are comparable, such an approx-
imation is not possible because neither of the bodies is in fact stationary relative to their inertial
center-of-mass frame. Gravitation is mutual, and if the earth pulls on the moon, then the moon
pulls on the earth. That is, the more massive central body is also forced to move under the gravi-
tational pull produced by the other orbiting body, and this motion of the central body influences
in turn on the motion of the orbiting body, and so on. To be precise, we should avoid saying that
the moon orbits the earth. In fact, the moon and the earth orbit each other, revolving around
their common center of mass. Therefore, it is necessary to take into consideration the motions of
both interacting bodies, the treatment of which is called the two-body problem.

The forces of interaction between the bodies, in accordance with Newton’s third law, are equal
and opposite. This fundamental law is valid for every known interaction between the bodies,
independently of the physical nature of the interaction. In particular, it holds for the gravitational
interaction. The universal character of Newton’s third law is associated with the conservation of
momentum in an isolated physical system and, more generally, with the homogeneity of physical
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space.
Applying Newton’s third law to the system of two interacting bodies, it is possible to reduce

the two-body problem to the problem of motion of a single body with a mass µ, the reduced mass,
whose value is given by µ = m1m2/(m1 +m2). This body moves under the action of a central force
equal to the force of interaction between the actual bodies (irrespective of the physical nature of
the interaction). It can be shown that the solution to this problem describes their relative motion,
that is, the motion of one of the bodies in the (noninertial) reference frame associated with the
other body. (See Chapter 7 for details.) When the interaction is the universal gravitation (whose
force decreases as the square of the distance between the bodies), an exact analytical solution is
available which shows that this relative motion obeys Kepler’s laws.

After the problem of the motion of one body relative to the other is solved, we can easily find
the motion of each of the bodies relative to their inertial center-of-mass frame. In this frame, the
two bodies move in conic sections about one another, with the focus for each trajectory at the
stationary common center of mass of the system. Knowing the motion of the bodies relative to
the center of mass, we can then find their motion relative to an arbitrary inertial reference frame,
taking into account that the motion of the center of mass of the whole system with respect to any
inertial reference frame is uniform rectilinear motion.

∗ ∗ ∗
The simulation program illustrates the two-body problem for the special case of a double

star whose components may have comparable masses and move under the mutual gravitational
attraction. To understand better the peculiarities of the problem, we should first explore the motion
in the inertial reference frame associated with the center of mass of the system (the corresponding
item in the menu “Options” should be checked).

Before the simulation we can enter the ratio of masses of the stars and their velocities. (We
need not enter the initial distance between the stars because in the program the distances are
measured in units of this initial distance.) It is assumed that at the initial moment the velocities
of the stars (in the center-of-mass reference frame) are perpendicular to the straight line joining
the stars. Since in this reference frame the magnitudes of the velocities are inversely proportional
to the masses of the stars, it is sufficient to enter the velocity for only one of the stars. We must
express it in units of the circular velocity. That is, if we enter 1 for the transverse velocity, the
components of the binary star will move synchronously along concentric circular orbits. In this
case the distance between the stars remains constant during the motion. If we enter 0.5 for the
initial velocity, each component initially moves at half the circular-orbit speed. When the initial
transverse velocity is less than the circular velocity, the stars initially are at the greatest distance
from one another, and vice versa.

The actual value of the velocity (say, in km/s instead of the circular-orbit speed as the unit of
velocity) depends on masses of the double star components and the distance between them.

The relative motion of the bodies in the two-body problem is equivalent, as we already men-
tioned, to the motion of a single body under a central force that equals the force of interaction
between the bodies. In the special case of a double star, this force is the inverse-square Newtonian
gravitational force. Therefore the relative motion of the double star components is a Keplerian
motion studied in the preceding programs.

The center of mass of the system is located on the straight line joining the stars, and divides this
line in a constant ratio inverse to the ratio of the masses. In the inertial reference frame associated
with the center of mass (Figure 5.1), both stars move synchronously around geometrically similar
(homothetic) elliptical orbits whose common focus is located at the center of mass of the system.
That is, both orbits have the same eccentricity. (In particular, the orbits may be concentric circles.)
The linear dimensions of these similar orbits are inversely proportional to the masses of the stars.
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Figure 5.1: Trajectories traced by a double star components in the center-of-mass reference frame.
The simultaneous positions of the bodies are marked by the same numbers.

One of the foci of each ellipse is located at the stationary center of mass of the system, and the
major axis of each ellipse passes along the same straight line. As the stars move, they are always
at the ends of a rotating straight line that passes through the stationary common focus of their
orbits located at the center of mass. (This rotating line is shown for different instants by dashed
lines in Figure 5.1). Therefore the trajectory of the relative motion (the motion of the smaller
star with respect to the greater one or vice versa) is an ellipse homothetic to the ellipses traced by
the stars in the center-of-mass frame. Any linear dimension (e.g., the major or minor axis) of this
ellipse of the relative motion equals the sum of the corresponding linear dimensions of the ellipses
traced by both stars relative to the center of mass.

Since the force of gravity between the stars lies at each instant along the line joining the stars,
the force vectors are directed through the center of mass. Hence the angular momentum of each
star relative to the center of mass does not change during the motion, and Kepler’s second law
is satisfied. That is, the dashed lines shown in Figure 5.1) sweep out equal areas of each ellipse
in equal times. Therefore for elliptic motions the line joining the stars rotates nonuniformly. The
rotation is fastest when the distance between the stars is minimal.

In order to explain why the motions of the stars relative to the center of mass obey Kepler’s first
law (i.e., occur along ellipses), we can show that each of the stars coupled by mutual gravitation
can be treated as moving not under the pull of the other moving star, but rather in a stationary
central gravitational field whose strength diminishes as the square of the distance from the center
of mass. The accelerations of the stars in these synchronous motions relate as their distances from
the center of mass.

The program “Double Star” allows us to open an additional window in order to simultaneously
display the relative motion of the double star components. This (non-inertial) frame of reference
can be associated with any of the stars, depending on the item chosen from the menu “Frames.”
We can see in the simulation that one of the components moves around the other in an ellipse
homothetic to the ellipses traced by the components of the double star in the inertial center-of-
mass frame.

To observe the motion of the double star components in an arbitrary inertial frame of reference,
we open the panel “Input,” choose the option “Arbitrary reference frame,” and enter the velocity of
the center of mass with respect to the reference frame in which the motion is to be displayed. The
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simulation program deals only with two-dimensional planar systems. (This limitation is caused
solely by the difficulties of reproduction and visual perception of a three-dimensional motion on
the two-dimensional computer screen.) Therefore the velocity vector of the center of mass must lie
in the plane of the orbital motion of the stars. The magnitude of this velocity must be specified in
units of the transverse circular velocity of the less massive component, measured with respect to
the center-of-mass frame. The direction of the velocity of the center of mass must be indicated by
entering the angle (in degrees) that this velocity makes with the perpendicular to the line joining
the double star components at the initial moment.

Figure 5.2: Trajectories of a double star components in an arbitrary inertial reference frame. The
simultaneous positions of the bodies are marked by the same numbers.

Figure 5.2 shows trajectories of the double star components in an arbitrary inertial frame of
reference. The simultaneous positions of the stars are joined by dashed lines. It is clear that
the center of mass (shown by a small circle in the figure) moves uniformly along a straight line.
The stars themselves move non-uniformly along complicated wavy or looped trajectories that are
generated by the superposition of their periodic Keplerian elliptical motions around the center of
mass and the uniform rectilinear motion alongside the center of mass.

∗ ∗ ∗
A double star is called a visual binary if its components are far enough apart to be seen

separately through an optical telescope. By measuring the period of revolution and the orbit
of relative motion, we can determine the sum of masses of the stars. To determine the mass
of each of the stars separately, we must measure their orbits traced around the center of mass.
(The dimensions of these orbits are inversely proportional to the masses of the stars.) At present
thousands of visual binaries with orbital periods from several years to many thousands of years
have been recorded.

In an astrometric binary one component is too faint to be seen and its presence is inferred
from the perturbations in the visible motion of the other component on the background of remote
stars. In this way the first white dwarfs (compact stellar objects formed as the end products of
the evolution of stars of relatively low mass) were discovered. The complicated wavy trajectory of
Sirius measured relative to the stars gave evidence of the presence of an invisible satellite that was
afterwards discovered visually.

In a spectroscopic binary the stars are so close that they usually cannot be resolved by a
telescope, but their relative motion can be detected by periodic variations in the observed spectrum.
These variations are caused by different Doppler shifts of lines common to the spectra of both
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stars. At conjunctions both stars move perpendicularly to the line of vision, and their spectral
lines coincide. After a quarter of the period, one of the components approaches with greatest speed
while the other recedes from the observer, and the lines in their spectra are shifted oppositely in
proportion to their speeds along the line of vision.

Questions and Problems

1. (*) Relative and “absolute” motion. Assuming that one of the stars of a binary system
moves around the other in a Keplerian ellipse, prove that relative to the center of mass the
stars trace homothetic elliptical orbits with the common focus at the center of mass. What
is the ratio of linear dimensions of the ellipses?

2. (*) A simple double star and scaling principles. The components of a double star have
equal masses and move in a circle. By what factor does their period of revolution change
if the spatial scale of the system (the distance between the components) is increased by a
factor of 4 (holding the motion circular and the masses constant)?

By what factor does the period change if the masses are increased by a factor of 4 (holding
the spatial distance between the components constant)?

3. (**) Scaling for an arbitrary double star. Answer the previous questions for a double
star with non-equal components that move around the center of mass along elliptical orbits.

4. (*) Effective stationary gravitational field. Show that in the two-body problem each
of the bodies coupled by mutual gravitation can be treated as moving not under the pull of
the other moving body, but rather in a stationary central gravitational field whose strength
is inversely proportional to the square of the distance of the body from the center of mass of
the system. Prove that the accelerations of the bodies in this motion relate as their distances
from the center of mass: a1/a2 = r1/r2.

5.2 A Planet with a Satellite

5.2.1 The restricted three-body problem

The programs “Planet with a Satellite” and “Double Star with a Planet” deal with a restricted
three-body problem, in which the mass of one of the bodies is negligible compared to the masses
of the other two. In this case we can ignore the influence of the least massive body (the “light”
body) on the motion of the other two. Hence the motion of the two massive bodies (the “heavy”
bodies) is exactly Keplerian, as described and illustrated in the section “Double Star” above. It is
shown there that, with respect to the inertial frame of reference associated with the center of mass
of the system, the bodies trace homothetic Keplerian orbits, whose linear dimensions are inversely
proportional to the masses of the heavy bodies. The common focus of the orbits is located at the
stationary center of mass of the system, and the radius vectors from the center of mass to each
star trace out equal areas in equal times.

Our current interest in the restricted three-body problem is the motion of the light body. This
motion occurs under the forces of gravitation created by the two heavy bodies whose motion is
already known. Even for the restricted three-body problem there is no general analytic solution.
That is, there is no solution that determines the motion of the light body under arbitrary initial
conditions. The absence of an analytic solution to the differential equations of motion for so
simple a system is probably related to the extreme complexity of possible motions of the system.
For some values of parameters of the system and/or initial conditions, the motion of the light body
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is irregular, seemingly random (chaotic), in spite of the deterministic character of the problem.
Chaotic behavior of non-linear systems governed by simple deterministic laws is related to the
extreme sensitivity of the differential equations describing the system to the initial conditions: a
very small initial difference may result in an enormous change in the future state and long-term
behavior of the system. Celestial dynamics gives one of the numerous examples of chaos in physics.

5.2.2 Managing the program “Planet with a satellite”

The simulation program “Planet with a Satellite” allows us to obtain a numerical solution to the
restricted three-body problem for arbitrary initial conditions and arbitrary values of parameters
of the system, and to observe the motion directly on the computer screen.

The motion of the simulated system can be displayed either in the frame of reference associated
with any of the two massive bodies, or in the center-of-mass reference frame. It is also possible to
observe the motion simultaneously in two reference frames.

We emphasize that this program can deal not only with a satellite orbiting a planet (the
primary) that, in turn, orbits a star, but also with various physical systems whose behavior is
described by the restricted three-body problem. For example, we can simulate the motion of an
interior light planet in a double-star system, or the motion of a spacecraft while en route towards
the moon under the action of the gravitational forces of both the earth and the moon. Or we
can investigate the lunar or solar gravitational perturbations in the motion of an artificial satellite
orbiting the earth.

And, finally, the program can simulate the motion in those interesting exotic special cases for
which the restricted three-body problem has exact solutions. With the help of the program we can
investigate, for example, the motion of a satellite in the vicinity of the libration points in a system
of two massive bodies that orbit one another under the forces of mutual gravitation. (The earth
and the moon, or the sun and Jupiter, give approximate realizations of such a system.)

To reproduce the simulations described below, we can avoid laborious entering the parameters
of the system and the initial conditions since we have the option of choosing a simulation from
the menu item “Examples,” which contains a list of prepared situations. During the simulation
we may change the reference frame in which the motion is displayed, or we can open two reference
frames to simultaneously display the motion as it is seen by different observers.

However, we may also conduct a simulation experiment of our own design. To do so, we need to
enter the parameters of the system and the initial conditions in the panel “Settings.” For the two
massive bodies, we need to state the ratio of their masses and the initial velocity that determines
their relative motion. This velocity is directed transversely (that is, perpendicularly to the line
joining the bodies). Therefore we should enter only its magnitude expressed in units of the circular
velocity (the velocity for which the relative motion of the bodies and their motions in the center-
of-mass reference frame are circular). That is, if 1 is entered, the bodies move in circles, and if 0.5
is entered, each body initially moves at half the speed each must have to sustain a circular orbit.

Next we enter the initial position and velocity of the satellite. To do so, we can choose one of
the following frames of reference: that associated with the planet (later we call it the geocentric
reference frame), that associated with the star (heliocentric), or the inertial reference frame asso-
ciated with the center of mass of the system. Which of the reference frames is more convenient
depends on the problem we are investigating. The choice is made by clicking the appropriate
option button.

The initial position of the satellite is defined in terms of its distance from the planet, its primary
(or from the star, or from the center of mass, depending on the frame of reference that has been
chosen), measured in units of the initial distance between the star and the planet, and the angle
which the radius vector of the satellite drawn from the planet (or from the star, or from the center
of mass) makes with the straight line directed from the star towards the planet.
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The initial velocity of the satellite is indicated in the same way. We first enter its magnitude.
If we use the geocentric reference frame, the magnitude of the initial velocity can be expressed
either in units of the unperturbed circular velocity of the satellite for its initial distance from the
planet (the velocity for which the satellite moves in a circular orbit about the planet in the absence
of the gravitational influence of the star), or in units of the circular velocity of the planet (for
the initial distance between the planet and the star). The choice in units is made by clicking
the corresponding option button which appears when the box for the input of the velocity (or
the scroll-bar) gets focus. If the heliocentric or the center-of-mass reference frame is used, the
magnitude of the satellite’s initial velocity must be expressed in units of the circular velocity of
the planet in the chosen frame of reference.

And finally, we can enter the values for radii of the star and the planet (measured in units of
the initial distance between the star and the planet). These values may be important for situations
in which the trajectory of the satellite passes very close to the star or to the planet. Depending
on the radii of these celestial bodies, the satellite may either safely bypass the body or crash onto
its surface.

5.2.3 Satellites of the planet that orbits a star

In the solar system masses of the planets are very small compared to the mass of the sun. Therefore
the gravitational attraction of the planets to the sun is much more important than the mutual
attraction of the planets. The latter causes only small deviations from Kepler’s laws.

If we consider a star with a single planet, its orbital motion is exactly Keplerian. Now let
us imagine that a satellite of a negligible mass is orbiting this single planet which, in turn, is
orbiting the star (Figure 5.3). Earlier in our study of the satellite’s orbital motion around a planet
we did not take into account the influence of the star. However, the satellite is subjected to the
gravitational pull of the star as well as to the pull of the planet. For example, the force of attraction
of the moon to the sun is greater than the force of attraction of the moon to the earth. In such
situations, why do we say that the satellite orbits the planet, when the force of its attraction to
the star is greater than the force of its attraction to the planet?

Figure 5.3: Trajectory of a satellite orbiting a planet in the heliocentric (left) and geocentric (right)
frames of reference. Coinciding numbers refer to the same instants of time.

The point is that when we consider the motion of a satellite, we refer it to the noninertial frame
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of reference associated with the planet. The planet itself is subjected to the gravitational pull of
the star. In the gravitational field of the star the planet and its satellite acquire almost equal
accelerations. Hence the influence of the star on the motion of the satellite relative to the planet is
rather moderate, and we can consider this relative motion to be Keplerian to a first approximation.
The important factor is not the gravitational field of the star by itself but rather the inhomogeneity
of this field over spatial distances of the order of magnitude of the separation between the planet
and the satellite. A more detailed discussion of the subject can be found in Chapter 6.

The simulation program “Planet with a satellite” allows us to investigate the general character
and peculiarities of this motion. Figure 5.3 depicts the screen image obtained in the simulation of
the satellite that moves in an almost circular, low orbit. The simultaneous positions of the bodies
on their trajectories are marked by equal numbers.

The complicated looping trajectory traced by a satellite in the heliocentric frame of reference
(the frame centered on the star, shown in the left side of Figure 5.3) is explained by the addition
of two rather simple motions: the revolution of the planet in a large ellipse around the star plus
the simultaneous revolution of the satellite in a small, almost circular orbit around the planet.
The right side of Figure 5.3 clearly shows that the geocentric motion of the satellite indeed occurs
along a simple almost Keplerian orbit which is only slightly perturbed by the star. We see that
the influence of the massive star on the orbital motion of the satellite around the planet is actually
much less effective than the influence of the planet on the heliocentric motion of the satellite.
Instead of a simple elliptical orbit (similar to the heliocentric orbit of the planet) we observe a
complicated curve of loops or waves.

Figure 5.4: Trajectory of a satellite orbiting a planet in the heliocentric (left) and in the inertial
center-of-mass (right) frames of reference. Equal numbers refer to equal instants of time.

To make the peculiarities of the motion more obvious, we have chosen for the simulation values
of parameters that are somewhat unrealistic for a real planetary system: The mass of the planet
is almost one third of the mass of the star, and so this simulation applies more reasonably to
the motion of a light inner planet in a double star system. However, the difference between the
two situations (a satellite orbiting a planet orbiting a star versus a planet orbiting one of the
components of a binary star) is quantitative rather than qualitative. If the mass of the second
body is comparable to the mass of the heaviest one (the ratio of their masses is about 1/3 in the
simulation shown in Figure 5.4), the later cannot be considered as stationary. Hence its reference
frame (the “heliocentric” frame in the simulation), as well as the “geocentric” frame associated
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with the second massive body (“planet”), is noninertial. Figure 5.4 shows the same motion of the
three bodies both in the heliocentric reference frame and in the inertial center-of-mass frame. In
the inertial reference frame both massive bodies move synchronously in homothetic ellipses with a
common focus at the center of mass of the system.

In the simulated system of interacting bodies the forces of gravitational interaction depend only
on the distances between the bodies. This character of the forces implies that the total mechanical
energy of the system is conserved during the motion, and that the equations of motion satisfy
the symmetry with respect to the time reversal, that is, with respect to the replacement t → −t.
The symmetry of time reversal means that for any possible motion of the system there exists the
symmetrical motion in which the bodies of the system pass through the same spatial points in
reverse order with the opposite velocities.

The program “Planet with a Satellite” allows us to verify the reversibility of motion experi-
mentally. Under the menu “Options” there is an item “Reverse velocities.” When we choose it,
the program instantly reverses the directions of velocities of all the bodies. Then we can watch
how the bodies move backward along the same trajectories, and the system evolves toward the
initial configuration. We note that the program does not store in memory the previous positions
of the bodies: After we click the item “Reverse velocities,” the program simply continues to inte-
grate numerically the same equations of motion, and we see clearly that the bodies pass backward
through the same positions. We can even observe the reversed motion for negative time values,
after the system passes through the initial configuration. During the simulation, we can reverse
the velocities several times.

Figure 5.5: Trajectory of a satellite orbiting in turn a planet and star in the heliocentric (left) and
in the geocentric (right) frames of reference. Equal numbers refer to the equal instants of time.

In the situations we have considered (the satellite of a star-orbiting planet or the planet in
a double-star system), the motion of the light body can be stable in the sense that the satellite
orbits its primary indefinitely. However, various unstable motions of the satellite (Figure 5.5) may
also occur. Depending upon the parameters of the system and on the initial conditions, these can
terminate in the satellite falling into the primary or the companion, or the satellite eventually being
ejected from the system. For some values of parameters, when the orbit of the satellite approaches
the boundaries of the sphere of gravitational action of the planet (Chapter 7 provides details about
this sphere), the geocentric motion of the satellite is strongly perturbed by the gravitational field of
the star. It may happen that after several revolutions about the planet the gravitational attraction
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of the star pulls the satellite from the planet’s “embrace,” and the satellite becomes an independent
planet orbiting the star along an almost elliptical Keplerian orbit that is slightly perturbed by the
planet. Such a case is illustrated in Figure 5.5, showing the motion of the system both in the
heliocentric and geocentric frames of reference.

It may happen that such a satellite lost by the planet, after several independent revolutions
about the star, is again captured by the planet. In Figure 5.5 such a “restitution” occurs after
approximately a “year” (one revolution of the planet around the star) of the satellite’s independent
existence. Similar exchanges of the satellite with the planet and the star in this “game of space
basketball” may be repeated many times. However, these extraordinary space voyages of the
satellite eventually end by its falling into the planet or star, or by its ejection from the system.
Similarly, in a double star system, a planet that periodically makes transitions between orbits
around each of the components cannot do so indefinitely. Sooner or later it crashes or is ejected.
In spite of the simple deterministic laws that govern these three-body systems, their long-term
behavior is seemingly random (chaotic) and unpredictable because of the extreme sensitivity to
the initial conditions: A very small variation in the initial data may make an enormous change to
the future state of the system.

Figure 5.6: Trajectories of the satellite with a retrograde revolution around the planet in the
heliocentric (left) and in the center-of-mass frames of reference.

Figure 5.6 illustrates the interesting situation in which the satellite revolves about the planet in
a direction opposite to that of the planet about the star. (Its revolution is said to be retrograde, as
opposed to direct.) To simulate this situation, we choose the opposite direction for the satellite’s
initial velocity (in the geocentric frame of reference). The narrow stretched ellipse shows the
Keplerian orbit along which the satellite (with the same initial position and the same heliocentric
initial velocity) would move around the star in the absence of the planet.

Retrograde revolution is more stable against perturbations from the gravitational field of the
star than is direct revolution of the satellite around the planet along the orbit of the same radius.
This increased stability is explained by a greater velocity of the satellite relative to the star in the
region between the planet and star, where the satellite is closest to the star.

These examples above clearly show how varied and complex the motions of a rather simple
system of three interacting celestial bodies can be.
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5.3 Exact Particular Solutions to the Three-Body Problem

The program “Planet with a Satellite” allows us to demonstrate the motions described by curious
exact particular solutions to the restricted three-body problem. These solutions correspond to
simple Keplerian motions of all three bodies along conic sections.

However, as a rule such a regular motion of the third body (of a negligible mass) is unstable
with respect to (arbitrarily small) variations in the initial conditions. In simulation experiments
we cannot enter absolutely precise values required for the desired motion. Moreover, the numerical
integration of the equations of motion is performed with a limited precision. Therefore we can
observe a regular motion of the system only during a finite time interval, after which the motion
of the third body transforms into chaotic orbiting of one of the two massive bodies that continue
to move in conic sections.

5.3.1 A system with equal masses of heavy bodies

When a pair of heavy bodies have equal masses, the three-body problem has an evident exact
solution, provided the third body is placed exactly halfway between the members of the pair
(at the center of mass of the system), and provided its velocity relative to the center of mass
is exactly zero. Then, since the gravitational forces on the central body due to each member
of the pair are equal and opposite, the central body remains at the center of mass. This is
true for an arbitrary symmetric motions of the massive bodies, including cases in which they
trace synchronously congruent elliptical orbits with the center of mass as their common focus (as
depicted in the left part of Figure 5.7).

Figure 5.7: The three-body system (with two bodies of equal masses) whose motion is described
by an exact particular solution.

Moreover, this exact particular solution exists even if the third (central) body has a finite mass,
that is, the solution holds for the unrestricted three-body problem. The only difference from the
preceding case is that the third body of an arbitrary mass, being placed halfway between the bodies
of equal masses, influences their motion because of an additional gravitational pull: The net force
on either one of the pair is the sum of two gravitational forces (pointing in the same direction), one
from the central body and the other from the other member of the pair. However, the net force
on either body of the pair is in this case also inversely proportional to the square of its distance
from the central body (from the center of mass of the system).



CHAPTER 5. MANY-BODY SYSTEMS 80

Thus, for the symmetric initial configuration of the system, and equal and opposite initial
velocities, the motion of each member of the pair about the center of mass of the system is
Keplerian as if it moved in a stationary inverse square central field. The symmetric configuration
is preserved during the motion, and the central body of an arbitrary mass remains at rest in the
equilibrium position (in the center-of-mass inertial frame of reference).

From the point of view of an observer on one of the paired bodies (that is, in the reference
frame associated with this body), the central body moves in an ellipse homothetic to the ellipse
traced by the other member of the pair (as depicted in the right side of Figure 5.7). The linear
dimensions of this ellipse are half those of the relative elliptical orbit of the second paired body.
The central body, moving synchronously with the second paired body, is always found at the exact
center of the line joining the paired bodies. The simultaneous positions of the second paired body
and the central body are marked with equal numbers. Two more small thin ellipses correspond
to the unperturbed trajectories (for the initial position 1 and position 8) along which the central
body would move (in the frame of the first body) in the absence of the second body.

However, the equilibrium of the central body, as well as this simple motion of the whole system,
is unstable. If the central body is even infinitesimally displaced from the center of mass and/or has
an arbitrarily small velocity relative to the center of mass, it recedes from the center of mass with
increasing velocity. Figure 5.8 illustrates this instability. In this example the initial distance of the
central body from the first of the paired bodies is made slightly greater its distance from the second.
The central body, whose initial velocity relative to the center of mass is set at zero, remains for a
while in the vicinity of the center of mass (as shown in the left side of Figure 5.8, which depicts the
motion in the center-of-mass reference frame). However the central body from the initial moment
begins to move toward the second (closer) paired body, about which it eventually orbits in an
irregular trajectory that is highly perturbed by the first paired body. Relative to the first body,
the central body deviates from the elliptical orbit that it follows in the exact analytic solution.
This deviation becomes noticeable at the position marked 4 (after three “months” of motion).

Figure 5.8: The instability of motion of a light body (placed half-way between two bodies of equal
masses) that is described by an exact particular solution.
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5.3.2 Satellites at the triangular libration points

The restricted circular three-body problem has a set of interesting exact particular solutions. If
two massive bodies orbit each other in circles, it can be shown that there exist five positions at
which a much less massive body may be placed so that it orbits circularly about the center of mass
of the system in the same plane and at the same angular speed as do the massive bodies. That is,
the whole system rotates rigidly, as if the three bodies were the points of a solid rotating uniformly
about the center of mass of the system. In other words, in the rotating reference frame associated
with the line joining the massive bodies, the body of a negligible mass is in equilibrium at any
of these positions. These five positions are called libration points (or Lagrange points). Lagrange
points are formed by the combined gravitational forces of both massive bodies.

These exact solutions are of some practical interest in space dynamics because of the possibility
(even if in principle) of launching a stationary satellite located at one of the Lagrange points in
the earth—moon system.

Three of the libration points are located on the line passing through the massive bodies (one
point between the bodies). They are called collinear libration points. Each of the other two points
is located at the apex of an equilateral triangle whose base is formed by the segment joining the
massive bodies. These two points are called triangular libration points.

An analytic proof of the existence of the triangular libration points, and the numerical calcu-
lation of the positions of collinear points are found in Chapter 7. Here we describe the simulations
in which these extraordinary exact solutions of the three-body problem are illustrated.

Figure 5.9 shows the stationary motion of a satellite at a triangular libration point of a system
in which the ratio of masses mB/mA equals 1/2. In the initial configuration the three bodies are
located at the vertices of an equilateral triangle BAS. In the reference frame in which the body
A is at rest (the left side of Figure 5.9), the body B moves along a circle with the center at A.
The angular velocity of this motion depends on the distance AB between the bodies and on their
masses. The initial velocity of the light body S equals the orbital velocity of the second body B.

Figure 5.9: Motion of the satellite at a triangular libration point.

If this second massive body B were absent, the satellite S with such an initial velocity would
have moved under the gravitational pull of the body A along an elliptical orbit with the nearer
focus at A, because this initial velocity is greater than the circular velocity. The initial part SS′

of this osculating orbit (unperturbed by the second body B) is shown in the left side of Figure 5.9.
However, the actual motion of the satellite S occurs along the same circular orbit as that of body
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B. The gravitational forces exerted on the satellite S by both massive bodies A and B together
provide the necessary centripetal acceleration for the circular motion of the satellite S with the
same angular velocity as that of line AB.

Hence the initial equilateral configuration of the system is preserved during the motion. The
sequential simultaneous positions of bodies S and B are marked in Figure 5.9 by equal numbers.
If body B were suddenly to vanish at some instant (at point B1 in Figure 5.9), the further orbital
motion of the satellite around body A would occur along an ellipse with the perigee at point S1.
(This point S1 is by 60◦ behind B1.) A segment S1S

′
1 of this ellipse grazing the actual circular

orbit is shown in Figure 5.9.
The motion of the system in the inertial reference frame associated with the center of mass

is illustrated in the right part of Figure 5.9. The equilateral triangle ABS with the bodies at its
vertices rotates uniformly as a whole (as a rigid body) about the center of mass.

Thus, in the reference frame associated with one of the massive bodies, say A, the other two
bodies are revolving (clockwise in Figure 5.9) along the same circular orbit, one of the bodies (the
satellite S in Figure 5.9) lagging from the other body (B) by an angle of 60 degrees. (For the other
triangular libration point, the satellite moves along the same circular orbit, in front of the other
body by 60 degrees.)

The triangular libration points are stable only if the ratio mB/mA of the mass mB of one of
the massive bodies to the mass mA of the other is small enough (mB/mA < 0.04). Since the mass
of the earth is approximately 81.3 times greater than that of the moon (mB/mA = 0.0123), for
the earth–moon system these points are stable.

Figure 5.10: The instability of motion of the satellite in the vicinity of a triangular libration point
(mB/mA = 1/2).

In the solar system, stable triangular libration points are formed by the combined gravitational
forces of the most massive planet, Jupiter, and the sun. There are two groups of asteroids (named
Greeks and Trojans) that are trapped at Jupiter’s leading and trailing triangular Lagrange points
and move around the sun synchronously with the planet.

For the system with mB/mA = 1/2, whose motion is displayed in Figure 5.9, the triangular
libration points are unstable. This instability in the motion of a satellite in the vicinity of the
triangular libration point is illustrated in Figure 5.10. Here the satellite initially is slightly displaced
from the point of unstable equilibrium, and it soon begins to recede from the point. What began as
a rigid circular motion about the center of mass is transformed into an irregular, chaotic revolution
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around body A.

5.3.3 The collinear libration points

The other three libration points are located on the straight line passing through the massive bodies.
One of the points lies between the bodies. If their masses are equal, this point is just halfway
between the bodies. (That is, it coincides with the center of mass of the system.) This case is
discussed above (see Figure 5.7). For a system with mB/mA = 1/2 (Figure 5.11), the interior
libration point is displaced from the center of mass towards the lighter body B by 0.237 of the
distance AB between the bodies. Its distance SB from the lighter body B equals approximately
0.43 AB, while the distance SA from the heavier body A is 0.57 AB (see Chapter 7). In this
position the resulting force of gravitational attraction by the bodies A and B is directed towards
the center of mass, and its magnitude is just sufficient to provide the satellite S with the centripetal
acceleration necessary for circular motion about the center of mass with the same angular velocity
as that of the uniform rotation of the line AB joining the massive bodies. Thus, the rectilinear
configuration of the system is preserved during the motion. The simultaneous positions of all the
bodies are marked in Figure 5.11 by equal numbers.

Figure 5.11: Motion of the satellite at the interior collinear libration point.

From the point of view of an observer on the heavier body A (see the right side of Figure 5.11),
the lighter celestial body B, moving around A in a circular orbit, is continually eclipsed by satellite
S, since the visible position of S always coincides with that of B. Similarly, an observer on B
perceives the situation as a uniform revolution of S about himself in a circular orbit of a radius
0.43 AB. This revolution visually coincides with the revolution of the celestial body A around B.

The ellipses in the right side of Figure 5.11 show the osculating orbits that the satellite would
trace around A if B were to suddenly vanish. (The first ellipse corresponds to the initial moment,
and the second ellipse to the moment when the satellite is at the point S1.) Indeed, the circular
velocity of the unperturbed orbital motion around A is greater than the circular velocity of the
actual motion, when the satellite is also subjected to the gravitational pull of the other body B.
This additional pull reduces the centripetal acceleration of the satellite, and thus a smaller velocity
is required for the circular motion.

Two collinear libration points lie outside the segment AB joining the massive bodies. For the
system with equal masses (mB = mA) these points are located symmetrically at a distance of
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1.198 AB from the center of mass, that is, at a distance of 0.698 AB beyond either of the bodies.
If mB < mA, one of the outer points is located closer to B. For mB/mA = 1/2 its distance from
the center of mass equals 1.249 AB, so that this point of libration is separated from the lighter
body B by a distance of 0.582 AB. The opposite collinear libration point is located at a distance
of 1.136 AB from the center of mass, so that its distance from the heavier body A equals 0.803
AB. The motion of the system with a satellite at this point in the inertial center-of-mass frame
of reference is illustrated in the left side of Figure 5.12. The resulting gravitational pull of both
A and B centripetally accelerates the satellite at this libration point so that it moves along its
circular orbit with the angular velocity exactly equal to the angular velocity of mutual revolution
of A and B.

Figure 5.12: Motion of the satellite at the opposite collinear libration point.

The circular motion of the satellite at this collinear libration point in the reference frame of
A is shown in the right side of Figure 5.12. The osculating ellipses grazing the circular orbit of
the satellite at the initial point S and another point S1 are the trajectories the satellite would
follow if B suddenly vanished at the moment the satellite is at these points. It may seem strange
at first that the presence of B (which produces an additional pull towards the center) reduces the
centripetal acceleration of the satellite instead of increasing it. However, we remember that here
the motion is referred to a noninertial frame of reference associated with A. The gravitational field
created by B accelerates not only the satellite but also gives an even greater acceleration to A and
hence to the reference frame associated with A. Thus, the presence of the second massive body B
reduces the acceleration of the satellite in its motion relative to A.

For the earth–moon system, the distance of the interior libration point from the moon equals
approximately 58 000 km, or 0.15 of the mean distance AB between the earth and the moon
(384 400 km). The distance of the exterior point from the moon equals 65 000 km, or 0.17 AB.
The third collinear libration point lies on the opposite (with respect to the moon) side of the earth.
Its distance from the earth equals 380 600 km, or 0.993 AB.

The motion of a satellite in any of the collinear libration points (as well as the relative equilib-
rium in the rotating frame of reference) is unstable. The instability of the exterior libration point
in the earth–moon system is illustrated in Figure 5.13, which shows the motion of the system in
the frame of reference associated with the earth E. The initial position of the satellite S is very
close to the libration point. If the moon M were absent, the satellite would have moved in the
gravitational field of the earth along an ellipse, a part of which, grazing the actual circular orbit at
the initial point S, is shown in Figure 5.13. The additional gravitational pull of the moon causes
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Figure 5.13: The instability of motion of the satellite at the exterior collinear libration point.

the satellite to move in a circle.
However, the satellite moves with the whole system in close proximity to the libration point (for

the given initial displacement from the libration point) only during approximately one revolution.
At the beginning of the second revolution it leaves the vicinity of the libration point and becomes a
satellite of the moon M . The orbital motion around the moon is strongly perturbed by the earth.
After several revolutions about the moon the gravitational field of the earth tears the satellite away
from the moon, and it becomes a satellite of the earth. Its almost closed elliptical orbit is, in turn,
perturbed by the moon. The osculating unperturbed ellipse corresponding to this motion is also
shown in Figure 5.13.

Exact solutions to the tree-body problem exist not only for the circular motions considered
above. When the two heavy bodies move around their center of mass in elliptical orbits, the third
body of negligible mass placed at one of the five libration points can also move in a closed elliptical
orbit provided its velocity has the value required for such motion. During such regular motions
the distances between the bodies are subjected to periodic variations while the three bodies trace
homothetic ellipses with common focus at the center of mass of the system. The program “Planet
with a Satellite” allows us to simulate these extraordinary motions.

Figure 5.14: The periodic elliptic motions of the bodies described by an exact particular solution
of the restricted three-body problem with the light body at the triangular libration point.
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Figure 5.14 shows the periodic motion described by such an exact solution with the satellite S
at the apex of the equilateral triangle ABS whose base AB is the line joining the massive bodies
A and B (mA/mB = 2). The left side of the figure corresponds to the inertial center-of-mass
reference frame in which all three bodies move in homothetic elliptical orbits. The right side shows
the motions of the satellite S and of body B in the frame of the heavier body A. The simultaneous
positions of the bodies are marked by equal numbers.

The equilateral triangular configuration of the bodies is preserved during the motion; that is,
the satellite remains at all times at the corresponding libration point. However, in contrast to the
case of circular motion, here the triangle formed by the bodies rotates non-uniformly (together
with line AB joining the bodies), and the lengths of its sides vary periodically during the motion
(just as does the distance AB between the heavy bodies). The major axis of the ellipse traced by
the satellite is at an angle with major axes of the ellipses traced by the heavy bodies. The three
bodies pass simultaneously through the corresponding points of their elliptical orbits (say, through
the ends of the major axes). At points marked as 1 in the figure the bodies are at their shortest
distances from the center of mass, and their angular velocity (the same for all bodies) is greatest.
At the remotest points 4 the angular velocity is smallest.

In the frame of body A (the right side of Figure 5.14) body B and the satellite S move in
congruent ellipses around A. The major axis of the ellipse traced by S makes an angle of 60◦ with
the major axis of the ellipse traced by B. If body B were suddenly to vanish, the satellite would
leave its elliptical orbit and move after this moment along a larger osculating ellipse. A part of this
osculating ellipse grazing the actual trajectory at point S is shown in the right side of Figure 5.14.

For mA/mB = 2 the motion described by this exact solution is unstable. After moving for a
while in the proximity of the triangular libration point, the satellite irregularly orbits one of the
bodies, its motion being strongly perturbed by the other body. Eventually it hits one of the bodies
or is ejected from the system. (The duration of the regular portion of this motion depends on the
precision with which the required initial conditions are entered in the simulation.)

Figure 5.15: The periodic elliptic motions of the bodies described by an exact particular solution
of the restricted three-body problem with the light body at the interior libration point.

The motion of the satellite at the interior Lagrange point of the two heavy bodies tracing
elliptical orbits is illustrated in Figure 5.15. In this motion the satellite S remains between the
heavy bodies, on the line joining them. This line rotates non-uniformly while the bodies move
along the ellipses. The position of the satellite divides the line in a constant ratio, and therefore
the satellite traces an ellipse homothetic with those traced by the heavy bodies. The position of
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the interior Lagrange point between the heavy bodies depends on their masses in the same way as
it does in the circular problem considered in detail in Chapter 7. For example, in a system with
mA/mB = 2 (Figure 5.15), the interior libration point is displaced from the center of mass towards
the lighter body B through 0.237 of the distance AB between the bodies. Its distance SB from
the lighter body B equals 0.43 AB, while the distance SA from the heavier body A is 0.57 AB.

From the point of view of an observer on the heavier body A (see the right side of Figure 5.15),
the lighter celestial body B, moving around A in an elliptical orbit, is continually eclipsed by
satellite S, since the visible position of S always coincides with that of B.

The small ellipses in the right side of Figure 5.15 show the osculating orbits that the satellite
would trace around A if B were to vanish suddenly. The first ellipse corresponds to the initial
moment, and the second ellipse to the final moment of the simulation.

The motion of a satellite at any of the collinear Lagrange points is always unstable (whatever
the ratio of masses of the heavy bodies may be). That is, sooner or later its simple elliptical
motion inevitably transforms into irregular, chaotic orbital motion around one of the bodies, and
eventually ends with an ejection of the satellite from the system or with the satellite crashing
against one of the heavy bodies.

5.4 A Space Flight over the Back Side of the Moon

The calculation of the trajectory for a space flight to the moon is another example of the restricted
three-body problem. As mentioned above, the problem does not have an exact analytic solution,
but its approximate solution can be obtained by the method of joined conic sections, discussed in
detail in Chapter 6. The principal idea of the method is to ignore the influence of the moon until the
spacecraft crosses the boundary of the sphere of gravitational action of the moon. In other words,
we consider the motion in the geocentric frame of reference as an unperturbed Keplerian motion in
the gravitational field of the earth. After the spacecraft crosses the sphere of gravitational action
of the moon, we consider its motion in the noninertial reference frame associated with the moon
(selenocentric frame), and assume that it is governed solely by the gravitational field of the moon.
On the boundary of the sphere we should transform the coordinates and velocity of the spacecraft
from one frame of reference to the other. Thus the three-body problem is reduced to two two-
body problems, for which the exact analytic solutions are available. This simple method proved
to be very useful for a preliminary investigation of possible trajectories for space expeditions. Its
reliability was proved by numerically integrating the differential equations of motion.

We can use the program “Planet with a Satellite” to simulate a space flight to the moon. Here
we let the earth be the greater of the two massive bodies (the “star”) and the moon the smaller
one (the “planet”). We let the spacecraft remain initially near the earth in a circular orbit, whose
radius is, say, one tenth the distance between the earth E and the moon M (Figure 5.16). In order
that the spacecraft reach the orbit of the moon, we must increase its velocity. Using its on-board
rocket engine, we direct its jet tangent to the circular orbit, opposite its orbital velocity. It then
assumes a new elliptical orbit, whose perigee is at the initial point S. At this point the ellipse grazes
the initial circular orbit. If we plan to obtain, say, a photograph of the back side of the moon with
the help of our automatic spacecraft, the apogee A of the unperturbed ellipse should be somewhat
greater than the radius of the moon’s orbit. A simple calculation shows that the required velocity
at perigee (at the initial point 1 of the elliptical trajectory) must be approximately 4.26 times
greater than the orbital velocity of the moon (for the initial circular orbit whose radius equals 0.1
of the earth–moon distance). The spacecraft must reach the apogee of its elliptical orbit at the
proper moment, namely simultaneously with the arrival of the moon at the same position. This
means that the radius to the starting point 1 must make a certain angle with the earth–moon line
(about 100 degrees opposite to the direction of the orbital motion).
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Figure 5.16: A space flight over the back side of the moon.

The left side of Figure 5.16 shows the unperturbed elliptical orbit of the spacecraft in the
geocentric frame of reference. The perigee is at the initial point S and the apogee A lies slightly
beyond the moon’s orbit. The actual trajectory is obtained by numerically integrating the equations
of motion that include the gravitational forces of both the earth and the moon. The simultaneous
positions of the spacecraft and the moon are marked by equal numbers. The geocentric velocity
of the spacecraft near the apogee A of the elliptical orbit is smaller than the orbital velocity of
the moon. The moon in its orbital motion overtakes the spacecraft and advances forward under
it. The motion of the spacecraft over the back side of the moon is retrograde relative the moon’s
surface.

We see that almost for the entire trip toward the moon’s orbit, the actual trajectory nearly
coincides with the unperturbed osculating Keplerian orbit. But close to the moon the two tra-
jectories noticeably diverge. The actual trajectory does not reach the apogee A of the osculating
ellipse and abruptly bends down between the positions 3 and 4. This divergence of the two tra-
jectories is clearly caused by the gravitational pull of the moon which is not taken into account in
the osculating ellipse.

The right side of Figure 5.16 shows the motion of the spacecraft and the earth in the seleno-
centric (fixed to the moon) reference frame. We note again the retrograde character of motion of
the spacecraft over the back side of the moon.

The dashed circle around the moon marks the boundary of the sphere of gravitational action
of the moon with respect to the earth. The spacecraft enters the sphere (near point 3) with a
hyperbolic selenocentric velocity, and leaves the sphere (near point 4) with the velocity that has
the same magnitude but a different direction. The direction of the selenocentric velocity of the
spacecraft is changed by the gravitational pull of the moon.

After the spacecraft leaves the sphere of gravitational action of the moon, its further motion
in the geocentric frame of reference again can be treated with great accuracy as an almost un-
perturbed Keplerian motion. The actual trajectory of the spacecraft obtained in the simulation
experiment practically coincides with the new osculating ellipse (the larger ellipse in the left side
of Figure 5.16). The transition from one osculating ellipse to the other is caused by the moon and
occurs while the spacecraft is moving within the sphere of gravitational action of the moon.
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5.5 Lunar Perturbations of a Satellite’s Orbit

The gravitational field of the moon accelerates both the earth-orbiting satellite and the earth itself.
These accelerations are almost equal if the satellite is not far from the earth. Therefore the lunar
perturbations of the orbit of a satellite in its geocentric motion are caused not by the gravitational
field of the moon by itself, but rather by the non-uniformity of this field over distances that are
equal approximately to the dimensions of the orbit. The difference between the actual acceleration
of the satellite and the acceleration it would have in the absence of the moon is here called the
perturbational acceleration.

On the surface of the earth, it is this non-uniformity of the gravitational field of the moon (and
to a lesser degree, of the sun) that gives rise to the ocean tides. Since the gravitational field of a
celestial body (say, the moon) accelerates the earth and the bodies on its surface by almost the
same amount, only the difference in the force, exerted on terrestrial bodies located at different
places, is important. This differential gravitational force is called the tidal force. Unlike the total
gravitational force of the celestial body, the tidal force decreases as the cube, not the square, of
the distance to the celestial body that causes the force.

There are several other situations in the solar system where tidal forces come to play. These
forces give rise to the Roche limit—the closest distance of approach to a planet where a (natural)
satellite can survive without being torn apart by tidal forces. In its simplest form, the Roche limit
is defined as the distance from a massive body (planet) at which the self-gravitation of the smaller
body (satellite) is just equaled by the tidal force due to the massive body.

A satellite orbiting the earth is also perturbed by the tidal forces. The lunar gravitational
perturbations are greater the larger the satellite’s orbit. The direction of the perturbational ac-
celeration depends on the position of the satellite relative to the earth and moon. If the satellite
is directly between the moon and earth, the perturbational acceleration is directed away from the
earth toward the moon because here the moon-induced acceleration of the satellite is greater than
the moon-induced acceleration of the earth. (However, its net acceleration is toward the earth.)
On the opposite side of the earth, the perturbational acceleration is directed away from both the
moon and the earth because here the moon-induced acceleration of the satellite is smaller than the
moon-induced acceleration of the earth. (But as before, the net acceleration is toward the earth.)

When the radius vector of the satellite is at right angles to the earth-moon line, and hence the
satellite is approximately at the same distance from the moon as is the earth, the perturbational
acceleration is directed towards the earth because the moon-induced accelerations of the earth and
the satellite, though almost equal in magnitude, have slightly different directions. The vectorial
difference between these accelerations is a small perturbational acceleration directed toward the
earth. The origin of the tidal forces is discussed in Chapter 7 in greater detail.

The program “Planet with a Satellite” allows us to simulate the lunar gravitational perturba-
tions of a satellite’s orbit. As in the preceding section, we let the earth be the “star” and the moon
be the “planet.” Figure 5.17 shows the orbit of the satellite in the geocentric (earth) reference
frame. Initially the satellite S is launched to orbit the earth E from point 1 in a circular path
(shown by a dashed line in the figure) that almost reaches the sphere of gravitational action of
the moon M . The gravitational perturbations from the moon cause the observed deviations of
the actual trajectory from the osculating unperturbed orbit. When the satellite moves into the
vicinity of points 2 – 3, the moon is on the opposite (left) side of the earth so that the perturba-
tional acceleration is directed to the right, and the resulting geocentric acceleration is insufficient
to keep the satellite in the original circular orbit. The actual orbit of the satellite deviates from
the unperturbed circle. The osculating orbit becomes an ellipse.

During the further motion the perturbations influence primarily on the apogee of the orbit,
since there the perturbational acceleration is greater because of a greater distance from the earth.
Furthermore, at apogee the orbital speed is smallest so that here the perturbational acceleration is
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Figure 5.17: Lunar gravitational perturbations of a large orbit (initially circular) of the earth’s
satellite.

more influential on the orbit than at other points of the orbit. The influence of the perturbational
acceleration at the apogee of the orbit is greater if the acceleration is directed parallel or antiparallel
to the orbital velocity. That is, the effect is more pronounced when the large axis of the osculating
ellipse is oriented neither along the earth-moon line nor perpendicular to it.

Lunar gravitational perturbations can cause significant changes in the satellite’s orbit, including
its destruction. The orbit obtained in the simulation shown in Figure 5.17 eventually becomes so
erratic from the moon’s perturbations that the satellite crashes into the earth. To make the effect
of gravitational perturbations more evident, the mass of the “moon” in this simulation is chosen
to be several times greater than that of the real moon.

5.6 A Space Voyage to a Distant Planet and Back

There are many reasonable trajectories for a space voyage from the earth to another planet in the
solar system. These trajectories differ in shape, in the duration of the voyage, in energy expendi-
tures (or, what is the same, in the required initial velocity of the spacecraft), and in navigational-
and control-system requirements. These factors are not equivalent. Their role depends essentially
on the purposes of the expedition. The needs of an automatic research vehicle and those of a
manned interplanetary ship differ greatly.

In designing reasonable trajectories, we use the approximate method of joined conic sections.
We divide the trajectory of the round-trip passive flight in the gravitational fields of the earth, sun
and planet into several parts:

1. From the point at which the rocket engine is switched off (several hundreds of kilometers
over the earth) to the boundary of the sphere of gravitational action of the earth;

2. From this boundary to the boundary of the sphere of gravitational action of the target
planet, during which the ship is under the gravitational influence of only the sun;

3. Within the sphere of gravitational action of the target planet;
4. Return path from the point of leaving the sphere of gravitational action of the planet to the

boundary of the earth’s sphere of gravitational action;
5. Inside the sphere of gravitational action of the earth from its boundary to the upper strata

of the atmosphere.
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It is assumed that during the first stage of the space voyage, the spacecraft is subjected only
to the gravitation of the earth; during the second, only to the gravitation of the sun; during the
third, only to the gravitation of the target planet; and so on. For each of the stages we use the
corresponding frame of reference: the geocentric frame for the first stage, the heliocentric frame
for the second, the reference frame of the target planet (the planetocentric frame) for the third
stage, and again the heliocentric frame for the fourth stage. At the boundaries of the regions we
make a transition in our calculations from one reference frame to another by adding vectorially
the corresponding velocities. (That is, to obtain the velocity of the spacecraft relative to the frame
it is entering, we add vectorially the velocity of the spacecraft with respect to the reference frame
it is leaving to the velocity of that frame relative to the frame it is entering.) Of course, in outer
space there are no actual impenetrable boundaries for gravitational fields. The method of joined
conic sections is an approximation only, and its results should be confirmed by a direct numerical
integration of the equations of motion.

The massive outer planets (Jupiter through Neptune) have almost circular orbits of large radii:
5.2 astronomical units (mean earth–sun distances) for Jupiter, 9.5 for Saturn, 19 for Uranus, and
30 for Neptune. Their spheres of gravitational action have large sizes (for Jupiter it is more than
fifty times greater than for the earth) because of their large masses and great distances from the
sun. With the help of the program “Planet with a satellite” we can simulate a space voyage to
some outer planet (Jupiter or Saturn) of the solar system, assuming in the program the greater
massive body (the “star”) to be the sun, the smaller one to be the target planet, and the satellite
(the zero-massed body) to be the space vehicle. We let the radius of the orbit of the target planet
be, for example, ten times the radius of the earth’s orbit. Against the background of such a large
distance, we can neglect the dimensions of the earth’s sphere of gravitational action (its radius is
150 times smaller than the mean sun–earth distance). Therefore we can simulate the second and
third stages of the space voyage to the distant massive planet, and the way back to the vicinity
of the earth, as a three-body problem. For this purpose we should enter the heliocentric position
and velocity of the spacecraft at the boundary of gravitational sphere of the earth (for the moment
when the spacecraft leaves the sphere) as the initial conditions for the simulation.

The initial distance of the spacecraft from the sun can be assumed to be equal to the radius
of the earth’s orbit. To estimate the required initial velocity, we can neglect the gravitational
attraction of the spacecraft by the target planet. The aphelion of an elliptical heliocentric orbit
of the spacecraft must reach the circular orbit of the planet. The minimal necessary characteristic
velocity of the spacecraft is required for the semielliptic (Hohman’s) transition from the earth’s
orbit. For such a transition the additional velocity of the spacecraft must be directed forward—
tangentially to the orbital velocity of the earth.

A calculation based on the laws of the energy and angular momentum conservation for the
motion in the Newtonian gravitational field of the sun (see Chapter 6, Section 6.9 for details)
shows that the spacecraft should leave the sphere of gravitational action of the earth with a
heliocentric velocity that is approximately 4.26 times greater than the orbital velocity of the target
planet whose orbit is ten times greater than that of the earth.

When the outer planet is to be the target, a very important consideration is timing. The
spacecraft must reach the aphelion of its heliocentric trajectory simultaneously with the target
planet, just when the planet in its circular orbital motion approaches this aphelion. Therefore the
angular position of the point to start en route from the earth’s orbit must be determined properly.
We can do so by calculating the duration of motion of the spacecraft along the semielliptic trajectory
with the help of Kepler’s third law. Taking into account the distance that the target planet covers
during this time, we find that the starting point of the spacecraft must have an angular position of
approximately 100 degrees behind the angular position of the target planet at the starting time.
Entering these initial values in the simulation experiment, we can expect that the spacecraft will
reach the sphere of gravitational action of the target planet. Then, by trial and error, we can find
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those precise initial conditions that produce a desirable trajectory.
Near the aphelion of its heliocentric trajectory, the spacecraft, though traveling in the same

direction as does the planet, moves much more slowly (relative to the heliocentric reference frame).
The planet overtakes the space vehicle, and the craft enters the planet’s sphere of gravitational
action from the planet’s forward side. Relative to the planetocentric frame, the velocity with
which the spacecraft enters the sphere of gravitational action of the planet is greater than the
parabolic velocity that corresponds to the gravitational field of the planet at the boundary of the
sphere. (This relationship applies to all planets of the solar system and to all possible transition
trajectories.) Therefore the planetocentric trajectory of the space vehicle within the sphere of
gravitational action of the target planet is always a hyperbola.

This means that after it enters the sphere, the space vehicle must inevitably leave the sphere
unless it strikes the planet or at least its atmosphere. In the planetocentric frame of reference, the
exiting velocity has the same magnitude as does the entering velocity, but its direction is along
the other asymptote of the hyperbola. To find the heliocentric exiting velocity, we should add
the planetocentric velocity vectorially to the orbital velocity of the planet. The resulting exiting
velocity generally differs from the entering one both in direction and magnitude. This velocity
determines the further heliocentric motion of the space vehicle. If the spacecraft is to return to
the vicinity of the earth, we should plan to have this new heliocentric trajectory graze or intersect
the earth’s orbit.

Figure 5.18: A space voyage to a distant planet and back.

Figure 5.18 shows the trajectory of the space voyage both in the heliocentric frame of reference
and the frame associated with the target planet. To make the features of the motion within the
sphere of gravitational action more evident, we have chosen an exaggerated value for the mass
of the planet (3% of the mass of the sun) and, consequently, of the radius of the sphere, whose
boundaries are shown by dashed circles in the figure. The simultaneous positions of the spacecraft,
the target planet, and the sun are marked by equal numbers. The spacecraft leaves the earth’s
sphere of gravitational action with a heliocentric velocity that is parallel to the earth’s orbital
velocity and 4.21 times the orbital velocity of the target planet (approximately 1.33 units of the
earth’s orbital velocity) at point 1, whose angular position is approximately 83 degrees behind that
of the target planet.

The unperturbed elliptical heliocentric orbit of the spacecraft is shown in the left part of
Figure 5.18. The spacecraft follows the unperturbed ellipse almost exactly up to position 3, where
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it reaches the planet’s orbit. We note that the planet at that moment is rather far behind the point.
The further heliocentric motion of the spacecraft between positions 3 – 4 is considerably distorted
by the gravitation of the planet. The planet gradually overtakes the slowly moving spacecraft, and
the spacecraft occurs inside the sphere of the gravitational action of the planet.

Inside the sphere the planetocentric motion of the spacecraft is governed mainly by the gravi-
tation of the planet. The hyperbolic part of the planetocentric trajectory inside the dashed circle
is clearly seen in the right side of Figure 5.18. The tiny loop in the heliocentric trajectory between
positions 4 and 5 (near the distant focus of the unperturbed ellipse in the left side of the figure)
is produced by addition of the hyperbolic planetocentric motion and the uniform circular orbital
motion of the planet.

To ensure that the spacecraft finds a way back to the neighborhood of the earth after passing
near the planet, we can chose the initial conditions of departure (for example, by trial and error)
in a way to make the unperturbed heliocentric ellipse for the return to the earth almost equal
(congruent) to the ellipse of the outward bound motion. In our simulation these ellipses (the
ellipse for the return is not shown in the figure) differ slightly only in the orientation of their
major axes. The osculating ellipse for the return has the same parameters (the major axis and
eccentricity) as that for the outward voyage if the two points at which the trajectory enters the
sphere of gravitational action and leaves it lie symmetrically at equal distances from the sun, and if
the vectors of the heliocentric velocities at these two points are equal in magnitude and make equal
angles with the line joining the points. This arrangement occurs if the axis of symmetry of the
planetocentric hyperbolic trajectory is orthogonal to the line joining the points in the heliocentric
frame.

Since the length of the major axis and the distance of the perihelion from the sun are the same
for the ellipse of the return trip as they are for that of the outward voyage, the trajectory returns
the spacecraft to the earth’s orbit in a time equal to that of the outward voyage. But to place the
spacecraft into the circular orbit of the earth, an additional rocket thrust at the perihelion of the
elliptical orbit is required. The resulting change in velocity must be of the same magnitude as the
initial one, but opposite in direction.

To economize on rocket fuel, we should be concerned about the duration of the designed expe-
dition: if the spacecraft arrives at the perihelion of its elliptical return path at the instant when
the earth in its orbital motion is just at this point, the earth’s atmosphere can be used to quench
the excess velocity of the spacecraft.

To provide an entrance into the atmosphere at a small angle, we should plan, in a real voyage,
to use additional rocket impulses to correct the trajectory. And certainly all the calculations of
the trajectory for this last stage of the voyage (inside the earth’s sphere of gravitational action)
must take into account the gravitation of the earth.
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5.7 Comets—Interplanetary Vagabonds

In spite of their small masses compared to the masses of the planets, comets are visible even to
the naked eye when they approach the sun. The nuclei of most comets are thought to be a kind of
dirty snowball no more than a few kilometers in diameter. The comet’s nucleus is surrounded by a
coma—a nebulous cloud of gas and dust. Passing near the sun, some of the comets acquire a tail
that is always directed away from the sun. When the sun’s radiation heats the nucleus, a tail of
evaporated (sublimated) gases is formed and stretches through great distances under the pressure
of light and the solar wind. The length of the comet’s tail can exceed the sun–earth distance. The
long bright tail in combination with its small mass prompts us to call such a strange heavenly
vagabond a “visible nothing.”

As members of the solar system, these bodies travel around the sun in extremely eccentric
orbits. Some of them have very long periods, exceeding 100,000 years. The elongated elliptical
orbits of such long-period comets are almost indistinguishable from parabolas, especially because
we are able to observe only the small portions of their orbits that lie in the vicinity of the sun.
These comets appear unexpectedly, in contrast to the short-period comets having orbital periods
of less than 150 years.

The most famous short-period comet was recognized as such in 1705 by Edmund Halley (1656–
1742). He established that the comets observed in 1531, 1607, and 1682 years were in fact a
single heavenly body that periodically returns to the sun approximately every 76 years. Its last
visit was in 1986. The aphelion of its elliptical orbit (of retrograde revolution) is beyond the
orbit of Neptune, the remotest giant planet of the Jovian group. Currently we are aware of many
short-period comets with periods from three to ten years.

The masses of comets are too small to influence the motion of the planets even when the comet
passes very close to a planet. On the other hand, massive planets such as Jupiter do change the
orbits of comets significantly. Depending on the approach of the comet to the planet, and on the
velocity of their relative motion, a “gravitational impact” with the planet can either increase or
diminish the eccentricity and size of the comet’s orbit. If the orbit is increased, the period is also
increased. The comet may even be transferred to an open hyperbolic orbit and ejected from the
solar system. Conversely, if the eccentricity is decreased, a long-period comet may be trapped in
a small orbit with a short period.

Like the major planets of the solar system, most short-period comets have orbits with rather
small inclinations to the plane of the earth’s orbit, that is, to the ecliptic. We can simulate the
planetary perturbations of such a comet with the help of the program “Planet with a Satellite,”
which deals with the motion of three bodies whose orbits lie in a common plane. Here the satellite
(a body of a negligible mass) plays the role of a comet.

In order to make the effect of planetary gravitational perturbations of the comet easily observ-
able in the simulation, we choose the initial eccentric orbit of the comet with a perihelion distance
smaller than the radius of the planet’s orbit, so that the orbits of the comet and the planet intersect.

Figure 5.19 illustrates such a simulation. The initial position of the comet C is near the sun S
on the opposite side of the planet P (say, Jupiter), which moves around the sun (counterclockwise)
in a circular orbit. The dashed circle around the planet P shows the sphere of its gravitational
action relative to the sun. The comet makes a revolution along its initial elongated elliptical orbit
during approximately seven revolutions of the planet, that is, during seven Jovian years. Small
circles with numbers show the positions of the comet at the moments the planet completes the
corresponding revolution and returns to P .

If the comet passes near the sun (through perigee of its orbit) when the planet is far from the
point (say, on the opposite side of the sun), the orbit of the comet is only slightly perturbed by
the planet. Such a situation occurs after the comet’s first revolution, which lasts almost a whole
number of Jovian years (position 7 in Figure 5.19, the planet being at point P at the moment).
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Figure 5.19: Perturbations of a short-period comet caused by a massive planet. The circles with
numbers show positions of the comet after each revolution of the planet.

Hence in the second revolution the comet traces an orbit that differs only slightly from the original
one. However, the period of revolution is increased, and so at the next passage of the comet through
perihelion (between positions 14 and 15) the planet is closer and perturbs the comet’s orbit more
greatly. These rather moderate perturbations by a massive planet distort the comet’s elongated
heliocentric orbit near its perihelion and cause irregular variations in the period of revolution.
Most of the short-period comets exhibit such variations. For example, the period of revolution of
Halley’s comet varies between 74 and 79 years.

Sooner or later the motions in the intersecting orbits with non-commensurate periods bring the
comet in close proximity to the planet. In the simulation shown in Figure 5.19 this rendezvous
occurs after the third revolution of the comet, between positions 20 and 21. The comet enters
the sphere of gravitational action of the planet with a hyperbolic velocity relative to the planet.
Considering the planetocentric motion of the comet within the sphere of gravitational action of the
planet, we can neglect the attraction of the comet by the sun. Tracing a portion of the hyperbola
(in the planet’s reference frame), the comet leaves the sphere of gravitational action (provided the
hyperbola does not intersect the surface of the planet) with the velocity of the same magnitude
(relative to the planet), but in a different direction. That is, the comet cannot be captured by the
planet to become a satellite of the planet.

The result of this encounter of the comet with the planet reminds us of a perfectly elastic
collision, in which the relative velocity changes only in direction. We can use this analogy with
the elastic collision because the comet crosses the sphere of gravitational action during an interval
that is small compared to the period of its revolution around the sun. The resulting relatively
rapid change in direction and magnitude of the heliocentric velocity of the comet produced by the
encounter with the planet can be treated as a “gravitational impact” that causes a considerable
variation in the heliocentric orbit of the comet.

In several projects of space expeditions, similar gravitational interactions with planets were
used to deliberately change the velocity and trajectory of an automatic space probe. For example,
the Voyager project was designed by NASA to take advantage of an unusual alignment of the outer
planets during the 1970s and 1980s. The configuration of the Jovian planets allowed Voyager to
increase its heliocentric velocity with the help of a series of gravitational impacts and thus to visit
and explore at short distances several of these planets in one expedition lasting about 12 years.
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The Voyager Grand Tour profoundly extended our knowledge about the remote planets of the solar
system and their numerous satellites.

In the simulation shown in Figure 5.19 the comet experiences a strong gravitational interaction
with the planet after three revolutions along its initial, almost elliptical orbit, which is rather
moderately perturbed by the planet. Because of the interaction, the comet is captured in a small,
short-period heliocentric orbit. This orbit also cannot exist for long since it intersects the planet’s
orbit. After five revolutions along the new orbit, the comet again meets the planet, and this second
gravitational interaction primarily influences the orientation of the major axis of the comet’s orbit.

It is clear that the fate of the comet is extremely sensitive to the initial conditions, one more
example of dynamical chaos: A very small initial difference may produce an enormous change in the
future motion of the system. For example, the gravitational influence of the planet can so increase
the heliocentric velocity of the comet that it is ejected from the system. Or the gravitational
interaction with the planet during their approach can change the orbit of the comet so that after
several revolutions it strikes the planet. With the simulation program, we can verify that a small
variation in the system parameters or initial conditions may cause a quite different long-term
consequence.

5.8 A Double Star with a Planet

The simulation program “Double Star with a Planet” is similar to the program “Planet with a
Satellite” discussed above. Both programs deal with the restricted three-body problem concerning
the motion of a body of negligible mass under the gravitational pull of two massive bodies orbiting
one another in circles or Keplerian ellipses. As already noted, the difference between these situ-
ations (the satellite of a star-orbiting planet or the planet in double-star system) is quantitative
rather than qualitative. Therefore the simulation of the satellite of a massive planet that orbits a
star can be regarded also as the simulation of the motion of an inner planet, one that orbits one
of the stars in the binary system (see Figures 5.3 and 5.4, p.p. 75 and 76). However, the method
of setting the initial conditions and parameters of the system used in the program “Double Star
with a Planet” is more convenient for the simulation of the motion of an outer planet, one that
orbits both stars.

To simulate this motion, we first enter the parameters of the system and the initial conditions in
the panel “Settings,” opened by clicking the corresponding menu item. For the two stars, we then
enter the ratio of their masses and the initial velocity that determines their relative motion. This
velocity is directed transversely (that is, perpendicularly to the line joining the stars). Therefore
we need enter only its magnitude, expressed in units of the circular velocity.

Next we enter the initial position and velocity of the planet. To do so, we can choose one of the
following frames of reference: that associated with either of the stars, or the inertial reference frame
associated with the center of mass of the system. The center-of-mass reference frame is convenient
for the simulation of the motion of an outer planet. The choice of the reference frame is made by
clicking the appropriate option button. The initial position of the planet is defined in terms of its
distance from the chosen star (or from the center of mass if that is the chosen frame) measured in
units of the initial distance between the stars, and the angle which the radius vector of the planet
drawn from the star (or from the center of mass) makes with the straight line joining the stars.
The initial velocity of the planet is indicated in the same way. We first enter its magnitude. If we
use the reference frame of one of the stars, the magnitude of the initial velocity must be expressed
in units of the unperturbed circular velocity of the planet for its motion around the corresponding
star (the velocity for which the satellite moves in a circular orbit about the star in the absence
of the gravitational influence of the other star). These units of velocity are convenient for the
simulation of the motion of an inner planet. If the center-of-mass reference frame is chosen, the
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magnitude of the initial velocity must be expressed in units of the circular velocity with which the
planet would move around the center of mass under the assumption that the mass of both stars
is concentrated there. Then we enter the angle between the initial velocity and the initial radius
vector of the planet (drawn from the corresponding star or from the center of mass).

Figure 5.20: An example of the irregular planetary motion in a binary star system.

The behavior of a planet in the double-star system can be very complicated. Figure 5.20 shows
an example of the irregular looping trajectory traced by a planet P in the frame of reference of
one of the stars. Initially the planet chaotically orbits the smaller star B that moves around the
greater star A in an elliptical Keplerian orbit. Then star A captures the planet, which then revolves
around A for a while in a small, almost elliptical orbit. After one revolution about A, the star B
recaptures the planet, and during the next revolution of B around A the planet revolves around
B in a small orbit, following B in its orbital motion around A.

Transitions from orbiting one of the stars to orbiting the other star and back occur several
times. Such an irregular, chaotic motion of the planet ends in a collision with one of the stars
(position C in Figure 5.20).

The long-term behavior of the system is very sensitive to the initial conditions. With slightly
different initial conditions, the planet may strike the other star or be ejected from the system.

However, it is possible for a planet in a double star system to move regularly in a stationary
orbit. Figures 5.3 and 5.4, p.p. 75 and 76, show examples of such motions. A small, almost
circular orbit around one of the stars is only slightly perturbed by the other star, and this motion
can continue indefinitely. This situation is similar to familiar examples of a moon orbiting a planet
orbiting the sun.

It may seem surprising that it is possible for a planet in a double star system to move in a
large, regular, periodic orbit in spite of the perturbations by the other star. Figure 5.21 shows
an example of an inner planet P moving (counterclockwise) around the heavier star A in an orbit
whose dimensions are only about a half of the orbit of stars’ (clockwise) relative motion. In the
reference frame of star A (left part of Figure 5.21), the planet makes exactly three revolutions
around star A during one period of mutual revolution of the stars. Although perturbed by the
other star, the planet’s orbit nevertheless is closed after three revolutions. When the smaller star
B completes a revolution, the planet arrives at the initial spatial point P with the same velocity
it had initially. The initial state of the system is reproduced, and the motion is periodic.

In the inertial center-of-mass frame (right part of Figure 5.21), this regular motion of the three-
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Figure 5.21: A periodic inner planet in the binary star system

body system looks even more complicated. The trajectory of the planet is a beautiful four-petalled
closed curve, traced once during exactly one period of stars’ mutual revolution.

Figure 5.22: A stationary outer planet in the binary star system.

A planet can move steadily around a binary system in an outer orbit that encompasses both
stars. If the orbit of the planet is large enough compared to the star-star distance, in the center-
of-mass reference frame it is almost elliptical and practically closed. An example of such an orbit
encircling the stars that trace elliptical orbits around the center of mass is shown in Figure 5.22.
Although the period of planet’s revolution is generally non-commensurate with the star’s period,
the motion of the planet is stationary and lasts indefinitely.

The right part of Figure 5.22 shows this motion in the reference frame of the heavier star A.
The wavy shape of the planet’s trajectory in this frame is explained by the periodic motion of star
A relative to the center of mass. The figure also shows a portion of the osculating elliptical orbit
for point C of the actual trajectory. The planet would trace this ellipse with the focus at A if the
second star B were suddenly to vanish when the planet is at point C.

For outer planets, periodic motions along closed orbits are also possible. Figure 5.23 shows a
surprising example of such a motion. Initially the stars A and B are found at the pericenters of the
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Figure 5.23: A periodic outer planet in the binary star system.

elliptical orbits they trace around the center of mass. The initial position of the planet P is on the
same line with the stars, and the initial velocity of the planet is perpendicular to this line. In this
example the outer orbit of the planet encircling both stars cannot be regarded as large compared
with the star-star distance.

The small circles show the positions of the planet after each revolution of the stars, when the
stars are again in their initial configuration (A and B in Figure 5.23). The individual loops of the
planet’s trajectory are not closed since under the gravitational attraction toward the two moving
centers the planet does not trace a Keplerian ellipse.

However, after seven revolutions the planet arrives at the initial point P with the same velocity
it had initially, and the trajectory of the planet is closed. During the time taken by the planet to
make these seven revolutions in an outer orbit, the stars make thirty mutual revolutions, after which
the initial state of the whole system is almost exactly reproduced! The right side of Figure 5.23
shows the wavy closed trajectory of the planet in the reference frame of the heavier star A.

5.9 Planetary System—Many-Body Problem

The simulation program “Planetary System” allows us to investigate a model of the solar system,
or to create an imaginary planetary system of our own—complete with the star, planets, moons,
comets, asteroids, and satellites, and to explore their orbital motion governed by the gravitational
forces. The simulation is based on the numerical integration of the differential equations of motion
for the many-body system. The forces of gravitational attraction between all pairs of bodies
constituting the system are taken into account. The masses, initial positions and velocities of the
bodies can be chosen arbitrarily. The only restriction is that all the bodies and their velocities
must lie in the same plane. This limitation is related solely to the difficulties of representation and
visual perception of motion of a three-dimensional system on a two-dimensional computer screen.

The simulated motion can be displayed either in the “heliocentric” reference frame (associated
with the star), or in the inertial frame associated with the center of mass of the system, or in
the “geocentric” reference frame (associated with one of the planets). The motion can be also
displayed on the screen in any two of these frames simultaneously.

When the program simulates the system of three or more bodies, their motion can be very
complicated. The system can evolve into a new configuration that does not at all resemble the
initial configuration. In the general case, the initial configuration is never reproduced. However,
this evolution is reversible since the equations of motion of a conservative system are symmetric



CHAPTER 5. MANY-BODY SYSTEMS 100

with respect to the time reversal. The program allows us to illustrate this reversibility of motion
in the simulation experiment. There is an item “Reverse Velocities” under the menu “Options”.
If we click it, the program reverses instantly directions of the velocities of all the bodies, and we
can observe how they move backward along the same trajectories towards the initial configuration.
Even if we start from a symmetric configuration of the bodies, the system loses this symmetry
sooner or later during the motion. However, this evolution of the system toward less symmetric
configurations cannot be regarded as its intrinsic property: the experiments with reversing the
velocities show clearly that the laws of motion allow also the evolution toward more symmetric
configurations. Certainly, we may regard such cases of evolution as very seldom and improbable,
because they require quite specific initial conditions.

The reversibility of motion is violated in cases of collisions of the bodies because such events
are treated by the program as completely inelastic.

The program allows us to change the scale in which the motion is displayed. We can do this by
clicking the menu items “Zoom In” or “Zoom Out.” Each time we do this, the scale is respectively
increased or reduced by a factor of 1.25. We can also select some region of the window which is of
the most interest, and enlarge this selected region to fit the whole window. To do this, we draw a
rectangle with the mouse in the same way as we do while selecting a part of the window in such
popular graphic editors like Microsoft Paint. After we release the left button of the mouse, the
boundaries of the rectangle may automatically change a bit to display a region whose sides are
proportional to the corresponding sides of the window. We can move the rectangle as a whole
in a new position, if necessary. (To deny the selection, we click somewhere outside it, or click
the right button anywhere.) To expand the selected region over the whole window, we choose
“Zoom In” from the menu, or simply double-click inside the selection. If the motion is displayed
simultaneously in two reference frames, we can make the selection for zoom either in one of the
windows, or in both windows at once.

To enter the parameters of the modeled system, we open a special panel by clicking the menu
item “Input.” The panel shows the initial configuration of the planets and the list in which their
masses, distances from the star, velocities, and radii are indicated.

If we wish to create a new model, we click the button “Clear” to remove all the old planets.
Then we enter the mass of a planet (in units of the star’s mass), its initial distance (in astronomical
units, i.e., in units of the mean sun-earth distance), its angular position (in degrees), its initial
velocity in units of the unperturbed circular velocity (i.e., velocity in the circular orbit if all other
planets were absent), the direction of the initial velocity (the angle it makes with the radius vector
in degrees), and the radius of the planet in units of the star’s radius. These parameters can be
entered into the corresponding boxes in any sequence.

When all the parameters are chosen, we click the button “Add,” and the planet is added to
the list. Then we repeat the procedure for the second planet, the third, and so on. When we add
a planet to the system, the new configuration of the planets with their unperturbed theoretical
orbits appears in the window.

To choose the reference frame in which the motion is to be displayed, we check the corresponding
check-box below the list. We can choose the heliocentric frame (that associated with the star),
or the inertial center-of-mass frame, or the “geocentric” frame, that is, the frame associated with
one of the planets (namely, the planet that is the first one in the list). We can associate the
“geocentric” frame with any of the planets by moving the desired planet to the top of the list. To
display the motion simultaneously in two reference frames, we check both corresponding boxes. To
begin the simulation, we click the “Ok” button. We can change the chosen reference frame at any
time during the simulation by picking a desired frame from the menu “View.”

To modify the modeled system, we can remove any planet from the system in the panel “Input”
by selecting the planet in the list and clicking the “Remove” button. Then we can add a new planet
(or several planets) to the list by using the procedure described above. If we are going to modify
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one parameter (or several parameters) of a definite planet, we double-click it in the list. Then
the boxes used for entering the data will display the values of parameters that correspond to this
planet. (When the panel is opened, these boxes show the values that correspond to the last planet
in the list.) After changing the values in the boxes, we click the button “Add,” and a planet with
the new parameters appears at the end of the list.

However, if we are going to only modify some parameters of the planet (but not to add a new
planet to the system), we should remove the planet with unmodified parameters from the list. And
if we do not modify the initial position of the planet, we should remove the old planet before we
click the “Add” button because it is not possible in this simulation to position two planets at the
same spatial point.

The menu item “Examples” opens a panel that displays a set of pre-defined examples the
program offers. Option buttons “Basic set” and “Extended set” allow us to switch between the
two sets of examples. When we select an example from the list, its brief description appears in the
text-box below. To start an example, we double-click it in the list. To display the parameters of
the system before starting an example, we click the “Ok” button, after which the panel “Input” is
opened with the list of the planets and their parameters. Clicking the “Ok” button of this panel,
we launch the simulation.

To create new examples of our own, we choose the option button “Custom set” in the panel
“Examples.” The menu item “Edit” is then enabled and allows us to modify an existing set of
examples by removing some of its items and adding new ones, or to create new sets and store them
in files. Choosing “Edit name and comment,” we can change the title and/or description of any
example without changing the parameters of the system. The items “Remove example”, “Move
example up,” and “Move example down” allow us to organize the set.

To add a new example to a set, we first construct a planetary system (with the help of the panel
“Input,” see above), watch the simulation, and choose the options that provide optimal conditions
of the simulation. These conditions include the choice of the reference frames, the time marks, the
scales selected with the help of menu items “Zoom in” and “Zoom out,” etc. (These conditions are
reproduced each time we recall this example.) Then we open the panel “Examples” and choose
“Create new example” from the menu “Edit.” The program suggests that we enter a title for the
example and give it a brief description. Clicking “Ok” button, we add the new example to the end
of the list. The menu item “Move example up” allows us to put the example into a proper place
in the list.

To save a modified or newly created set, we choose “Save” in menu “File.” The program
prompts us to give a name to the set of examples (this name appears over the list of examples
when we open the set), and a name (and path) to the file in which the set is to be stored. We
can create as many sets as we need. To open a set afterwards, we choose “Open examples” in the
menu “File,” and find the desired set by the name of the file in which the set is stored.

5.9.1 A model of the solar system

The dimensions of the orbits of Mercury and Neptune (and Pluto) differ greatly, and it is difficult
to display these orbits in the same scale. However, we can separately simulate the Jovian and
terrestrial planets. Figure 5.24 shows three planets of the terrestrial group—Venus V , earth E,
and Mars M , orbiting the sun S. (For the sake of simplicity Mercury is not shown, otherwise the
figure looks overcrowded.) At the initial moment all the planets are at the perihelia of their orbits.
Numbers 1 and 2 mark the positions of the planets in their orbits one and two years later. At
each of these moments the earth, of course, is again at its initial position E. The circles without
numbers show the positions of the planets at the final moment of the simulation (2.5 years).

The right side of Figure 5.24 shows the trajectories of the planets (and the sun) in the geocentric
frame. In this frame, the sun moves in a closed elliptical (almost circular) orbit. For an observer
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Figure 5.24: Three planets of the terrestrial group in the heliocentric (left) and the geocentric
(right) reference frames.

on the earth, during one year the sun completes its way along the ecliptic moving counterclockwise
through the zodiacal constellations. The complicated looping trajectories generated by the planets
in the geocentric frame are explained by the superposition of this motion of the sun and rather
simple planetary revolutions around the sun. When a planet passes through the apex of a small
loop turned towards the earth, for the observer on the earth the visible motion of the planet
through the stars is retrograde.

5.9.2 Kinematics of the planetary motion

To better understand the complicated motions of the planets as seen by an observer on the earth,
next we consider the kinematics of superior and inferior planets separately. Figure 5.25 shows
Jupiter, whose orbit is 5.2 times greater than that of the earth. Jupiter completes one revolution
along its orbit with reference to the background of the stars in 11.86 years. (This time is called
the sidereal period of the planet.) In other words, during one revolution of Jupiter around the sun,
the earth makes 11.86 revolutions. At the initial moment of the simulation Jupiter and the earth
are at the perihelia of their orbits (points P and E respectively). The positions of Jupiter in its
orbit after one (terrestrial) year, two years, etc., are marked by numbers 1, 2, . . . . At each of these
moments the earth returns to its initial position E.

When Jupiter passes through point P1, the earth is at point E1 on the line joining Jupiter
with the sun. Such a collinear configuration of the superior planet with the earth and the sun
(the planet and the sun on the opposite sides of the earth) is called opposition. In opposition the
distance between the earth and Jupiter is smallest. Because the earth revolves around the sun
faster than does Jupiter, for the observer on the earth the motion of Jupiter through the stars near
the opposition is retrograde.

One year after the opposition P1–E1, the earth again returns to point E1. But in this same
time Jupiter has moved from P1 forward along its orbit. Therefore the next opposition occurs
after an interval somewhat longer than a year, when the earth again passes between the sun and
Jupiter (positions P2 and E2). The mean time S taken by the earth and planet to move from one
opposition to the next is called the synodic period . This interval between successive oppositions is
determined by the difference in the angular velocities of the earth and the planet. Therefore for a
superior planet 1/S = 1/E − 1/T , where T is its sidereal period, and E is the sidereal period of
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Figure 5.25: The sun, earth, and Jupiter in the heliocentric (left) and the geocentric (right) frames.

the earth (the sidereal year, 365.257 days).1 For Jupiter, the sidereal period S = 398.88 days.
In the geocentric reference frame (right side of Figure 5.25), the loops of Jupiter’s trajectory

reflect the heliocentric orbital motion of the earth rather than the motion of Jupiter itself. The
trajectory makes a loop facing the earth each time the two planets approach one another in their
heliocentric motion and align radially on the same side of the sun. At the top of each loop Jupiter
is on the side of the earth opposite the sun (hence the name, opposition).

The arc of Jupiter’s geocentric trajectory midway between oppositions produces Jupiter’s direct
(counterclockwise) motion for an observer on the earth. In the middle of the arc, Jupiter lies
behind the sun. This collinear configuration of two planets on opposite sides of the sun is called
conjunction. At conjunction the direct motion of Jupiter through the stars appears to us to be
greatest. The angular speed of this apparent motion is generated more by the earth’s motion
rather than by the motion of Jupiter itself, though Jupiter’s proper motion contributes to this
angular speed. The apparent motion of the sun (caused by the earth’s revolution) is even faster
because the sun is much closer to the earth than is Jupiter. Hence at conjunction the sun appears
to overtake Jupiter.

Of the planets whose orbits lie outside that of the earth, Mars is nearest, its orbit being only
one and a half times greater than that of the earth (Figure 5.26). In this diagram, the earth and
Mars are initially at the perihelia of their orbits (E and P respectively). The small circles with
numbers 1, 2, . . . show the positions of Mars after a year, two years, etc. The first opposition
occurs after more than a year, when Mars is at point P1 and the earth is at E1. The difference
between the angular velocities of the earth and Mars is not as great as it is for Jupiter, so that the
earth’s successive oppositions with Mars occur after an interval exceeding two years—the synodic
period of Mars is 780 days. (Compare with 399 days of the synodic period of slowly moving Jupiter
whose successive oppositions with the earth repeat after an interval only about a month longer
than the terrestrial year.)

At the second opposition (P2—E2) the distance between the planets E2P2 is smaller than the

1The tropical year (the interval between successive arrivals of the sun at the vernal equinox) is about 20 minutes
less than the sidereal year because of the slow westward motion of the equinoxes about the ecliptic as a result of
the earth’s precessional motion. The gravitational forces of the sun and the moon exerted on the equatorial bulge
of the earth produce a torque on the earth. If the earth were not spinning about its axis, it would turn under the
torque so that the equatorial bulge moves toward the plane of the ecliptic. However, this torque does not change
the inclination of the axis of the spinning earth to the ecliptic, but instead under the torque the axis undergoes
precession with a period of 25 800 years.
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Figure 5.26: The sun, earth, and Mars in the heliocentric (left) and the geocentric (right) frames.

distance E1P1 because of the comparatively large eccentricity of the orbit of Mars. For an observer
on the earth, the most favorable conditions to observe Mars occur at great oppositions, when Mars
passes through the perihelion of its orbit, where the distance between the orbits is smallest. Great
oppositions occur once every 15 – 17 years, approximately in August, because the earth passes
through the point of its orbit closest to the orbit of Mars in August. The right side of Figure 5.26
shows (in a somewhat smaller scale) the orbit of the sun and the looping trajectory of Mars in the
geocentric frame.

The kinematics of the inner planets is illustrated in Figure 5.27. The left side shows the
heliocentric orbits of Mercury and the earth. The simulation starts when the planets are at the
perihelia P and E of their orbits. Positions of the planets at an inferior conjunction (the collinear
configuration of the planets with the sun in which the inner planet is between the earth and the
sun) are marked by P1 and E1. (This is the second inferior conjunction; the first one occurred
almost at once after the start of the simulation.) The next inferior conjunction (P2—E2) occurs
after the earth makes less than one third of its revolution. During this time Mercury makes one
and a third revolutions in its orbit. (The synodic period is 116 days.)

The orbit of the sun and the looping trajectory of Mercury in the geocentric frame are shown in
the right side of Figure 5.27. For the observer on the earth, the motion of Mercury among the stars
near its inferior conjunctions (positions P1 and P2) is retrograde. At these conjunctions Mercury
passes through the points P1 and P2. These lie nearest to the earth and are at the “bottoms” of
the earth-facing loops. At inferior conjunctions P1 and P2 Mercury is on the line between the earth
E and sun because at these moments the sun passes through positions S1 and S2 respectively.

In the interval between these inferior conjunctions, the motion of Mercury along the large
convex arc of its geocentric trajectory is direct (counterclockwise). In the approximate middle of
this arc Mercury is again aligned with the sun and earth, this time behind the sun relative to the
earth, in a position called its superior conjunction. At superior conjunctions the apparent direct
motion of Mercury among the stars is greatest, being a combination of its orbital motion around
the sun and the apparent motion of the sun around the earth.

5.9.3 Hypothetical planetary systems

Many planets of the solar system have moons. Even though some of the moons are as large as
planets (e.g., our natural satellite, the moon), it is difficult to simulate a real planet with a satellite
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Figure 5.27: The kinematics of an inferior planet (Mercury) in the heliocentric (left) and the
geocentric (right) frames.

because the distance planet—moon is much smaller than the planet—sun distance. The computer
screen is too small to display the orbits of a planet and its moon in the same scale. Therefore in
the proposed simulations we choose exaggerated distances between a planet and its moon. The
orbital motion of such a moon is more greatly perturbed by the sun and other planets than are
real moons.

Figure 5.28: A binary planet orbiting a star.

We can even simulate a double planet orbiting the star, that is, a binary system like earth-moon,
but with comparable (or even equal) masses of the components. Figure 5.28 shows the complicated
intertwining trajectories traced by the components of such a double planet in the reference frame
of the star. Thin lines show the ellipses that each of the components would follow in the absence
of the other component under the gravitational pull of the star.

Our planetary system is a relatively calm place of the universe. Serious catastrophes with
disastrous collisions of heavenly bodies are found only in its early history. Numerous craters on
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the surface of the moon and Mercury remind us of the early stages in the evolution of the solar
system. These traces of ancient collisions and bombardments by smaller bodies survived perfectly
on some small planets (and natural satellites of large planets) because these celestial bodies have
no atmosphere. Nowadays significant events like large meteoroids or new comets whose huge tails
threaten to cover the earth or other planet seldom occur in the solar system.

The program “Planetary System” allows us to construct an arbitrary collection of celestial
bodies and thus to reproduce the events typical for a “young” system of planets during its early
evolution. For example, we can show that two planets in neighboring or intersecting orbits cannot
exist for a prolonged time. Sooner or later they are found dangerously close and either collide or
perturb their orbits so greatly that one of them may be ejected from the system.

When two celestial bodies of the simulated system come in contact, the program handles the
event as a completely inelastic collision. That is, the two bodies join in a single body whose mass
equals the sum of their masses, and whose velocity immediately after the collision is determined
by the conservation of momentum.

Constructing planetary systems of our own, we can give free play to our imagination. Then
we can test the invented system in the simulation to discover whether its long-term behavior is
stable or the system evolves through mutual collisions of the components and other catastrophes
to something quite different from its initial image. In particular, we can observe and study ex-
perimentally the accumulation of larger bodies from smaller bodies via collisions in the process of
the formation of planets. Various hypothetical systems that demonstrate somewhat unexpected
behavior can be found in the menu item “Examples.”

The stars in the sky look fixed. However, careful measurements show that the relative positions
of these “stationary” stars slowly change. These variations prove that the stars move in directions
perpendicular to the line of vision. It is difficult to notice this motion because of the immense
distances to the stars. If the distance to the star is known, we can calculate the tangential velocity
of the star. On the other hand, the motion of a star along the line of vision is revealed through a
uniform shift in the wavelength of its radiation (the Doppler effect). These observable radial and
tangential motions of stars are explained partly by their individual movements and partly by the
motion of the sun with respect to the surrounding stars.

The sun is found in the outskirts of the galaxy, where stars are rare. We do not expect the
sun to encounter another star in the foreseeable future. But closer to the center of the galaxy the
concentration of stars is greater, and such events as the binary approach of stars are likely. Mutual
gravitation accelerates the stars and turns them from their rectilinear trajectories. Relative to their
common center of mass, the stars trace open hyperbolic Keplerian orbits. After the rendezvous
the stars recede along the other asymptote of the hyperbola (Figure 5.29).

We can reproduce such a stellar rendezvous with the simulation program “Planetary System.”
This interaction is especially interesting if the stars have planetary systems. The gravitational
perturbations caused by a bypassing star can produce disastrous changes in the planetary system.
Figure 5.29 shows a possible scenario of the encounter of two planetary systems whose stars S and
Z have masses that differ by a factor of 2. Two planets A and B revolve counterclockwise about
the star S in almost circular orbits (initially they are found on one line with S), and one planet P
revolves (clockwise) about the star Z.

The influence of the planets on the motion of the stars is negligible since the masses of the
planets are small compared to the masses of the stars. Hence the stars move in almost hyperbolic
trajectories. Portions of these hyperbolas (with a common focus at the origin) are shown on the
right side of Figure 5.29.

The left side of Figure 5.29 corresponds to the frame of reference associated with the star S.
As the “intruder star” Z approaches S, its gravitational pull strongly perturbs the planets that
orbit the star S. Initially almost circular, the orbit of the superior planet B is transformed into a
large elongated ellipse. The planetary configuration during the approach of the stars is such that
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Figure 5.29: An encounter of two planetary systems.

the influence of the intruder Z on the inferior planet A is even greater. The star Z captures the
planet A, and when the stars recede, two planets, P and A, are orbiting the star Z.

The right side of Figure 5.29 shows trajectories of all the bodies in the inertial center-of-mass
frame where the stars move in homothetic hyperbolas. The circles mark simultaneous positions of
the bodies after equal time intervals. The primed letters show positions of the bodies at the end
of the simulation.

Another scenario of an encounter of two planetary systems is shown in Figure 5.30. For sim-
plicity, we consider that the star S is orbited by a single planet A, and the intruder star Z also has
a single planet P . (Otherwise, for the stars with several planets, it is hard to follow the interlacing
traces of numerous planets.) During their rendezvous the stars exchange the planets. When the
stars recede, the planet A orbits its new host star Z, while the planet P is captured by the star S
into a closed elliptical orbit.

The fate of encountering planetary systems is very sensitive to variations in the initial condi-
tions. Figure 5.31 shows the same planetary systems as in the previous example, but this time the
planet P orbits the star Z in a slightly different orbit. (The orbit of planet A around the star S
is unchanged.) We see that this time the intruder Z again captures the planet A. However, the
planet P retains its primary, and when the stars recede, both planets A and P are orbiting the
star Z.

5.10 Exact Particular Solutions to the Many-Body Problem

The program “Planetary System” allows us to simulate the curious examples of exact particular
solutions to the three-body and many-body problems. Although these exact solutions are of no
practical importance, their existence is interesting in principle and deserves discussion.
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Figure 5.30: The encountering stars exchange planets.

5.10.1 A star with two planets of equal masses

Figure 5.32 shows possible simple motions in a system of two planets of equal (arbitrarily large)
masses. Initially the planets A and B are on the same straight line with the star S, at equal
distances on opposite sides of the star. The planets have equal and opposite initial velocities
(in the heliocentric frame of reference, shown in the left side of the figure). We see that in
this symmetric configuration the motion of the system is regular and very simple. The star is
stationary, while the planets trace closed orbits that are congruent ellipses with the common focus
at the center of the star. At any moment the planets are at the opposite ends of the straight line
passing through the center of the star, and their velocities are equal and opposite. The planets
simultaneously pass through the perihelia of their orbits, where their velocities are greatest. They
also pass simultaneously through the aphelia where their velocities are smallest. After a revolution
the mechanical state of the system is exactly reproduced, so that the motion is periodic.

The unperturbed heliocentric elliptical orbits that each of the planets would trace in the absence
of the other planet under the gravitational pull of the star are shown by thin lines in the left side
of Figure 5.32. These osculating orbits that graze the actual elliptical orbits of the planets (thick
lines) are shown for perihelia A and B (only portions of the ellipses) and for points A′ and B′ that
are closer to aphelia (whole ellipses). The right side of Figure 5.32 shows the trajectories of the
sun S and planet A in the reference frame of planet B (in a somewhat smaller scale).

This simple behavior of the three-body system can be easily explained. In the symmetric
configuration the gravitational forces exerted on the star by the planets are equal and opposite, so
that the star is stationary in the equilibrium position until the symmetric configuration is violated.
The gravitational forces exerted on each planet by the star and the other planet are both directed
towards the center of the star because the other planet is on the same line with the star. Hence the
resulting force is central. We can show (see Chapter 7) that its magnitude is inversely proportional
to the square of the distance between the star and the planet. Therefore we can consider the planet
to move in a stationary Newtonian inverse square gravitational field whose source is located at the
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Figure 5.31: The “intruder star” captures a planet.

Figure 5.32: Simple periodic motions described by an exact particular solution to the three-body
problem for a symmetric configuration of two identical planets.

center of the star. The effective mass of the stationary source Meff is somewhat greater than that
of the star by virtue of the additional gravitational pull of the other planet (Meff = M + m/4,
where M is the mass of the star, and m is the mass of either of the planets). In this effective
gravitational field the planet traces a closed Keplerian ellipse. The second planet moves in an
equivalent effective gravitational field and traces a congruent ellipse.

The simple situation described above holds only for the symmetric configuration of the system.
This configuration is preserved during the motion provided the initial velocities of the planets
relative to the star are exactly equal and opposite. If the velocities slightly differ in magnitude or
direction, or the distances from the star to the planets are not exactly equal, or the three bodies
do not lie exactly on the same straight line, the paths of the planets sooner or later deviate from
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Figure 5.33: Instability of the periodic motion described by the exact particular solution of the
three-body problem.

Keplerian ellipses, and these deviations progressively increase. The motion of the system becomes
irregular (chaotic) and very complicated.

Figure 5.33 illustrates a possible evolution of events in the case of slightly unequal initial
distances of planets A and B from the star S. These complicated long-term trajectories change
drastically if we enter a tiny variation in the initial conditions. Hence the periodic motion described
by the exact particular solution of the three-body problem is unstable.

5.10.2 A “round dance” of identical planets

Similar periodic exact solutions in which the bodies trace closed Keplerian orbits exist for systems of
several bodies of equal masses surrounding a central body. Let n bodies of equal masses (“planets”)
be located at all n vertices of a regular (equilateral) polygon, and one more body (a “star” whose
mass can differ from the masses of the other bodies) be located at the center of the polygon. In this
symmetric configuration the central body is in equilibrium under the joint gravitational pull of all
other bodies. The resulting gravitational force exerted on any of the other bodies (on a “planet”)
by the central body and by the other planets is directed toward the center, and its magnitude is
inversely proportional to the square of the distance from the center (or, which is the same, to the
square of a linear dimension of the polygon, e.g., of the length of its side).

Therefore the “planets” can trace congruent Keplerian ellipses with the common focus at the
“star,” provided the initial velocities of the planets are equal in magnitude and make equal angles
with the corresponding radius vectors of the planets. The symmetric polygonal configuration of
the system is preserved during the motion (Figure 5.34).

In particular, the “planets” can move uniformly at equal distances from one another along
the same circular orbit (circumscribed about the polygon). In this case the polygon, with the
planets at its vertices, rotates uniformly about its center. For elliptical trajectories of the planets,
the angular velocity of the polygon is greatest when the planets pass simultaneously through the
perihelia of their orbits. In this non-uniform rotation of the polygon, the lengths of its sides vary
periodically.

The upper part of Figure 5.34 shows examples of these exact solutions for systems of three
(left) and four “planets” (right). Moving along elliptical trajectories, at any moment the bodies
are at the vertices of a regular triangle and a square respectively. Thin lines show the unperturbed
orbits that the “planets” would trace in the absence of the other planets under the gravitational
pull of the “star” (about the center of mass of the two-body system consisting of the star and the
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Figure 5.34: The polygonal systems of identical massive bodies surrounding the central body in
symmetric motions described by exact particular solutions to the many-body problem.

single planet). These osculating orbits are shown for the perihelia of the actual orbits and for the
moments at which the “planets” pass through the points marked by small circles.

The lower part of Figure 5.34 shows similar systems of six and eight “planets” of equal masses
orbiting the “star” in symmetric equilateral configurations. The regular polygon (at whose vertices
the “planets” are found) rotates non-uniformly, and the lengths of its sides vary periodically during
the rotation. The osculating ellipses shown by thin lines correspond here to the unperturbed orbits
of individual “planets” in the frame of the star (rather than in the center-of-mass frame).

5.10.3 Keplerian motions in the triangular equilateral configuration

We note that in the exact solutions to the many-body problem considered above, the mass of the
central body can be zero. That is, a system of n bodies of equal masses located at the vertices
of a regular n-sided polygon, under their mutual gravitational attraction, can perform a beautiful
“round dance” even in the absence of a central body.

In particular, three bodies of equal masses in the equilateral configuration can synchronously
trace congruent ellipses whose major axes make angles of 120◦ with one another. To simulate such
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Figure 5.35: Regular motions of three bodies of equal masses in the equilateral configuration.

a motion with the program “Planetary System,” we should choose two planets that form with the
star an equilateral initial configuration, and enter the masses of the “planets” equal to the mass of
the star. The heliocentric initial velocities of the planets should be equal in magnitudes and form
equal angles with radius vectors of the planets.

Figure 5.35 shows the orbits of the three bodies A, B, and S of equal masses in the center-of-
mass reference frame (left part) and in the “heliocentric” reference frame associated with S (right
part, where the scale is somewhat smaller). The thin lines grazing the actual trajectories show
portions of the heliocentric orbits that each of the bodies A and B would have traced in the absence
of the other (that is, only under the gravitational pull of the “star” S) for the moment at which
the planets pass through points A′ and B′.

The equilateral configuration of three bodies is especially interesting because it can be preserved
during the motion even when the masses of the bodies are different (Figure 5.36). It can be shown
(see Chapter 7) that the total gravitational force exerted on each of the bodies by the other two
bodies is directed toward the center of mass of the system and is inversely proportional to the
square of the distance from the center of mass. It can also be shown that the accelerations of the
bodies produced by these forces are in the same ratio as are the distances of the bodies from the
center of mass. Therefore the initial equilateral configuration can be preserved during the motion,
provided the initial velocities are chosen properly.

In other words, in the equilateral configuration of three bodies coupled by the gravitational
forces each of the bodies can be considered as moving in an effective stationary central inverse
square gravitational field with the source at the center of mass of the system, although this field is
produced by the moving bodies. Hence the bodies can trace synchronously homothetic Keplerian
ellipses with the common focus at the center of mass of the system. Linear dimensions of these
ellipses are proportional to the distances of the bodies from the center of mass.

To simulate this motion, we chose an equilateral initial configuration of the bodies and enter
certain initial velocities. An example of such a simple periodic motion is shown in Figure 5.36
(mA = 0.3mS , mB = 0.6mS). In the inertial center-of-mass frame (left) the bodies trace homoth-
etic elliptical orbits of different sizes and orientations.

In the “heliocentric” frame associated with the body S of greatest mass (right side of the
figure), the bodies A and B trace the congruent ellipses shown by thick lines. The major axes of
these ellipses form an angle of 60◦. The thin lines show the (non-congruent) heliocentric osculating
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Figure 5.36: Regular motions of three bodies of unequal masses in the equilateral configuration.

orbits that each of the bodies A and B would have traced around S in the absence of the other
body (for the moment at which A and B pass through the aphelia of their orbits).

This regular periodic motion of the three bodies is unstable with respect to (small) variations
in the initial conditions that disturb the symmetry of the system. This instability of motion in the
initially equilateral configuration of the bodies is illustrated by Figure 5.37.

Questions and Problems

1. (∗) Circular orbits of massive planets. Two planets of equal masses m are positioned on
the opposite sides of the star of mass M at equal distances from it. What initial velocities
must have the planets in order to move around the star in a circular orbit, being all the
time at the opposite ends of its diameter? Express the velocity in units of the unperturbed
circular velocity (i.e., the circular velocity of one of the planets in the absence of the other).
Verify your answer by the simulation experiment for m = M/2.

2. (∗) Solid rotation of three identical bodies in the equilateral configuration. Three
bodies of equal masses m are positioned at the vertices of an equilateral triangle whose side
equals a. What initial velocities must have the bodies in order to move circularly under the
forces of mutual gravitational attraction? What is the angular velocity of such solid rotation
of the system? Try to reproduce this motion in the simulation experiment. Is the motion
stable?

3. (∗∗) Bodies of unequal masses in the equilateral configuration. Prove analytically (on
the basis of Newton’s laws of motion and Newton’s law of gravitation) that three bodies of
arbitrary masses m1, m2, and m3 can move synchronously in Keplerian elliptical or circular
orbits, preserving the equilateral configuration during the motion. Express the period of
this motion in terms of the masses of the bodies, the distance r between them in the initial
equilateral configuration, and their initial velocities v0.
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Figure 5.37: Transition to an irregular motion in the system whose initial motion is close to that
described by the exact solution.
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The Simulated Phenomena
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Chapter 6

Phenomena and Concepts
(Introductory Approach)

Celestial mechanics and space dynamics study the motion of various celestial bodies such as stars,
planets, comets, natural and artificial satellites, and spacecraft. The theoretical background of
celestial mechanics is given by Newton’s laws of motion and Newton’s law of gravitation.

The three laws of motion that are the foundation of Newtonian mechanics are applicable to
all macroscopic bodies moving at non-relativistic velocities (small compared to the speed of light)
under the forces of any kind. For massive celestial bodies, the most important are the forces of
gravitational attraction, described by Newton’s law of gravitation.

6.1 Newton’s Law of Universal Gravitation

Newton’s law of gravitation states that any two material points (point masses) in the universe
attract each other with a force proportional to their masses m1 and m2 and inversely proportional
to the square of the distance r between them:

F = G
m1m2

r2
. (6.1)

Here G is the universal gravitational constant, whose value depends on the chosen units of force,
length and mass. In the International System of units (SI) G = 6.672 · 10−11 N m2/kg2.

For massive bodies of finite dimensions, Newton’s law of gravitation expressed by Eq. (6.1) is
valid when the distance between the bodies is much greater than their linear dimensions. The
bodies can then be regarded as point masses. However, it is possible to prove from Eq. (6.1) and
the principle of superposition (the vector character of forces) that the gravitational interaction
between bodies whose distribution of mass is spherically symmetric obeys the same Eq. (6.1) for
any distances between the bodies. In other words, real bodies having spherical symmetry interact
as point masses positioned at the geometric centers of the bodies. The distribution of mass in stars
and planets is very nearly spherically symmetric. Consequently, the gravitational field created by
these bodies is the same as if their mass were concentrated at their centers, and Eq. (6.1) can
be used to calculate the gravitational force acting upon their satellites even in cases in which the
satellites approach close to the surface of the primary. The distance r in Equation (6.1) in such
cases is the distance between the satellite and the center of the primary.

In particular, Eq. (6.1) is applicable to any small bodies located both over the earth and on its
surface. And it does not matter whether this body, say, an artificial satellite, is itself spherically
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symmetric because the gravitational field of the earth is practically the same at all points of the
body. In other words, within a satellite’s extent, the gravitational field of the earth is almost
uniform, and we can assume that the gravitational force is applied at the center of gravity of the
satellite.

To emphasize that the gravitational force is a central force and is directed towards the center
of the planet, we can rewrite Eq. (6.1) for the vector F(r) of force experienced by a body of mass
m at a given point r in the gravitational field of a planet of mass M :

F(r) = −G
Mm

r2

r
r
. (6.2)

The radius vector r is the displacement of the body relative to the center of the planet. Equation
(6.2) shows explicitly that the gravitational force F(r) is everywhere directed opposite the unit
vector r/r, that points from the center of the planet towards the given point r.

Since the gravitational force is radial, it is convenient to introduce the notation Fr for the
projection of the force onto the direction of the radius vector r:

Fr(r) = −G
Mm

r2
. (6.3)

The radial projection Fr is negative because the force F(r) is directed towards the center of
the planet.

The motion of celestial bodies is governed first of all by the Newtonian gravitational forces
described by Eqs. (6.1) and (6.2).

Near the surface of the earth, where the distance r in Eq. (6.3) approximately equals the earth’s
radius R ≈ 6370 km, the gravitational force makes any free body (independently of its mass and
other properties) to fall with an acceleration g ≈ 9.81 m/s2 (the acceleration of free fall):

g = G
M

R2
, whence GM = gR2. (6.4)

When we deal with motions of satellites orbiting the earth, it is convenient to replace, with
the help of Eq. (6.4), the product GM with gR2 in Eq. (6.2) for the gravitational force. This
substitution allows us to avoid memorizing the values of the earth’s mass M and the gravitational
constant G for calculations.

The earth exerts a force on any body located over the earth although there is no physical
connection between the earth and the body. We say that the presence of the earth produces a
gravitational field. Any particle in this field experiences a force directed toward the center of the
earth. The force exerted on a particle of unit mass is called the strength of the gravitational field.
The strength of the field decreases with the distance according to the inverse square law. The
gravitational force experienced by a particle is proportional to its mass and to the strength of the
field at the particle’s location. Near the surface of the earth the strength of the gravitational field
is equal to the acceleration of free fall g.

We should realize that Newton’s law of gravitation, although it characterizes the field quantita-
tively, nevertheless gives no physical explanation of gravity. The field is an elegant way to describe
gravity, but it does not tell us what gravity is.

6.2 Potential Energy of a Body in the Newtonian Gravita-
tional Field

The gravitational field is a potential, or conservative field. That is, the work performed by a
gravitational force when a body is moved from some point to another point, does not depend
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on the path along which the body moves. The potential energy of a body at some point in the
gravitational field is measured by the work performed by the gravitational force when the body is
transferred from this point to a point in which the potential energy is assumed to be zero. This
point of zero potential energy can be chosen arbitrarily. Usually either a point on the surface of the
planet or a point at infinity is chosen to be the point of zero potential energy. This arbitrariness
does not influence any physical applications of the potential energy because only the difference of
its values is important.

In celestial mechanics it is convenient to choose the point of zero potential energy at infinity,
where the gravitational force vanishes. With this choice, the potential energy U(r) of some body
of mass m at a finite distance r from the center of a planet of mass M is negative because the
work performed by the force of gravitational attraction, Eq. (6.1), is negative when the body is
transferred from this point to infinity. The value of the gravitational potential energy depends
only on distance r from the center of the planet, that is, the field is spherically symmetric:

U(r) = −G
Mm

r
. (6.5)

For the potential energy of a body in the gravitational field of the earth, we can, with the help
of Eq. (6.4), rewrite Eq. (6.5) as:

U(r) = −mg
R2

r
. (6.6)

The familiar expression U(h) = mgh for the potential energy of a body at a height h over the
earth’s surface is approximate and valid only for small values of h compared to the earth’s radius
R (h ¿ R). In other words, the expression U(h) = mgh holds in the approximation of the “flat
earth,” that is, within small enough spatial regions for which the gravitational field of the earth
can be considered as uniform.

The approximate formula U(h) = mgh can be obtained from the exact Eq. (6.6), if we express
there the distance r of the body from the earth’s center as the sum R+h, expand U(r) in a power
series and keep there the terms to the first power of the small parameter h/R. Then we should
throw off the constant term −mgR (it has the physical sense of the potential energy of the body
at the surface) because in the expression U = mgh the potential energy on the surface is assumed
to be zero.

6.3 Circular Velocity and Escape Velocity

Circular orbits can exist in any central gravitational field. For a given distance r from the center of
force, the body, in order to move in a circle, must have a definite velocity that is perpendicular to
the radius vector. The value of this circular velocity vc can be calculated with the help of Newton’s
second law by equating the centripetal acceleration v2

c/r for motion along a circle of radius r to
the acceleration GM/r2 created by the gravitational force:

vc =

√
GM

r
. (6.7)

The circular velocity is inversely proportional to the square root of the orbit’s radius and is
independent of the satellite’s mass. This dependence of the circular velocity on the radius of the
orbit is characteristic of the inverse-square law of the gravitational force.

The period of revolution around the planet along a circular orbit can be found by dividing the
circumference 2πr of the orbit by the constant value of the circular velocity:
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T =
2πr

vc
= 2π

√
r3

GM
. (6.8)

As we can see from Eq. (6.8), the square of the period of revolution is proportional to the cube
of the radius of the orbit (Kepler’s third law for the special case of circular orbits), and inversely
proportional to the planet’s mass. An analytic proof of Kepler’s third law for the general case of
elliptical orbits is considered in Chapter 7.

The dependence of the period of revolution T on the planet’s mass M gives a simple and precise
method of “weighting” a planet (more exactly, method of determination of the planet’s mass) by
measuring the periods of revolution of the planet’s satellites.

The kinetic energy of a satellite orbiting a planet along a circular orbit can be expressed, with
the help of Eq. (6.7), through the radius of the orbit:

Ekin =
1
2
mv2

c =
GmM

2r
.

Comparing this expression with Eq. (6.5), we see that the kinetic energy equals one half the
magnitude of the satellite’s potential energy U(r).1 Hence, the total energy E = Ekin + U(r) is
negative and equals the kinetic energy in magnitude:

E = −Ekin = −1
2
mv2

c = −GmM

2r
. (6.9)

The absolute value of the total energy of a satellite in a circular orbit is inversely proportional
to radius r of the orbit.

For the earth’s satellite, we can replace the product GM with gR2 in Eq. (6.7) and obtain the
value vc =

√
gR2/r for the circular velocity. For a hypothetical ground-level circular orbit r = R,

and so vc =
√

gR ≈ 7.9 km/s. This value is sometimes called the first cosmic velocity.
The escape velocity vesc for a given distance r from the center of a planet is the minimal speed

that a body must have at this point in order to overcome the gravitational attraction of the planet
and to recede to infinity. The value of the escape velocity can be found from the law of energy
conservation. The minimal speed of a body at a distance r needed to escape the gravitational
field corresponds to a speed of zero at infinity, and hence to a kinetic energy of zero at an infinite
distance from the planet. The value of the potential energy at infinity is also zero. Hence the total
energy of a body that is to escape is zero. With the help of Eq. (6.8) for the potential energy, we
can write:

mv2
esc

2
−G

mM

r
= 0,

whence

vesc =

√
2GM

r
. (6.10)

Comparing this expression with Eq. (6.7), we see that the escape velocity vesc for any distance
r from the center of a planet is

√
2 ≈ 1.41 times greater than the circular velocity. Its value is

independent of mass m of the body. For a body at the surface of the earth, the escape velocity
vesc =

√
2gR ≈ 11.20 km/s (the second cosmic velocity).

If the magnitude of the initial velocity v0 of a body equals the escape velocity, the body escapes
the gravitational field of the planet and recedes to infinity independently of the direction of the

1The same relation between the averaged-over-a-period values of kinetic and potential energies of a satellite is
also valid for elliptical orbits.
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initial velocity, provided its trajectory does not intersect the surface of the planet. The motion
occurs along a parabolic trajectory or a straight line. The latter case corresponds to an upward
direction of the initial velocity.

If the initial velocity of a body exceeds the escape velocity, the body recedes to infinity along
a hyperbolic trajectory. At an infinitely large distance from the planet, the motion of the body
is uniform and rectilinear, occurring along one of the asymptotes of the hyperbola. The constant
value of the velocity v∞ of this motion can be found from the law of energy conservation:

mv2
0

2
−G

mM

r
=

mv2
∞

2
,

whence

v∞ =

√
v2
0 −

2GM

r
=

√
v2
0 − v2

esc. (6.11)

This value is called the remaining velocity or the hyperbolic excess of velocity.

6.4 Geometric Properties of Keplerian Orbits

In the general case the motion of a body under the action of a central Newtonian gravitational
force, whose magnitude is inversely proportional to the square of the distance, occurs along one
of the conic sections: an ellipse (or, in particular, a circle), a parabola, or a hyperbola. It is
convenient to write the equation of a trajectory of a Keplerian motion in polar coordinates:

r =
p

1 + e cos ϕ
. (6.12)

Here r (the length of the radius vector) is the distance of a point on the trajectory from the
center of force (a focus of the conic section), and ϕ is the angle between the radius vector and the
axis of symmetry of the trajectory (the major axis of the conic section) directed from the focus
toward the nearest point of the trajectory. The quantity p in Eq. (6.12) has a dimension of length.
It is called the semilatus rectum or the orbital parameter of the conic section. The dimensionless
quantity e in Eq. (6.12) is called the eccentricity of the conic section.

For e = 0 Eq. (6.12) gives r = p, that is, the distance r does not depend on ϕ. Hence for e = 0
the orbit is a circle whose radius equals p. Otherwise, for e > 0, the orbital parameter p is the
distance between the center of force and the point of the orbit determined by the angle ϕ = ±π/2,
for which cos ϕ = 0. Geometrically, p is the length of the perpendicular to the major axis, drawn
from the focus to the orbit. For e < 1 Eq. (6.12) describes an ellipse (Figure 6.1), for e = 1 a
parabola, and for e > 1 a hyperbola.

An elliptical orbit can also be characterized by the distances rP and rA, where rP is the distance
between the center of force and the nearest point P of the ellipse and rA is the distance between
the center of force and the farthest point A of the ellipse (see Figure 6.1). Point P is called
the perihelion for a planetary orbit, perigee for the orbits of earth’s satellites, and pericenter for
the general case. Similarly, A is called the aphelion or apogee, or apocenter. In Eq. (6.12) the
value ϕ = 0 defines the point P , while ϕ = π defines the point A. Substituting these values into
Eq. (6.12), we find:

rP =
p

1 + e
, rA =

p

1− e
. (6.13)

We can express the eccentricity e of the orbit in terms of rP and rA from these relations as:
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e =
rA − rP

rA + rP
.

Figure 6.1: Elliptical trajectory of a body moving in a Newtonian central gravitational field.

The sum of distances from the center of force to the perihelion and to the aphelion (or to the
perigee and apogee) equals the major axis 2a of the ellipse:

2a = rA + rP =
2p

1− e2
. (6.14)

The sum of distances r1 and r2 from the foci to a point on the ellipse has the same value
2a for all points of the ellipse: r1 + r2 = 2a. This important property of the ellipse is often
regarded as its definition. One of the simulation programs exploits this property in order to prove
experimentally the statement of Kepler’s first law concerning the possible shapes of orbits in a
Newtonian gravitational field.

One more property of the ellipse is worth mentioning: any light ray emerging from one of the
foci of a concave elliptic mirror, after reflection is directed toward the second focus of the ellipse.
This optical property of the ellipse is related to Fermat’s principle of geometrical optics. Fermat’s
principle states that the actual path of light between any two spatial points corresponds to a
stationary value (in particular, minimal or maximal) of the optical length (and hence of the time
of travel). For a plane mirror, this principle leads to the law of reflection: the angle of reflection
equals the angle of incidence. For an ellipse, the sum of the distances from any point to the foci
has the same value. Consequently, the optical path between the foci is the same for any light ray
reflected by the elliptic mirror. Applied to a Keplerian orbit, this property means that, for any
point of the orbit, the tangent (and thus the velocity vector) forms equal angles with the straight
lines joining this point with the foci.

The distances between the center of the ellipse and its foci (CF1 and CF2 in Figure 6.1) are
equal to the product of the semimajor axis a and the eccentricity e:

CF1 = CF2 = a− rP = ae.

The semiminor axis b is expressed in terms of the semimajor axis a and eccentricity e by:

b = a
√

1− e2. (6.15)
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6.5 Initial Conditions and Parameters of Keplerian Orbits

We next determine the parameters of a satellite’s orbit when the satellite, whose initial distance
from the center of a planet is r0, has a transverse initial velocity v0, as shown in Figure 6.2. (By
transverse, we mean that the velocity is perpendicular to the radius vector and hence to the local
vertical line. Or, in other words, the initial velocity is horizontal.)

Figure 6.2: Circular and elliptical orbits of satellites that are launched from an initial point P with
transverse initial velocities.

If the initial velocity equals the circular velocity vc for the given distance r0, the orbit is a circle
of radius r0 (Figure 6.2). If the initial velocity v0 exceeds the circular velocity vc, but is smaller
than the escape velocity vesc =

√
2vc, the perigee P of the elliptical orbit is located at the initial

point, and the apogee is at the opposite end A of the major axis. This axis passes through the
initial point and the center of the planet (see Figure 6.2).

In order to find the distance rA between the center of force and the apogee, we can use the
law of energy conservation and Kepler’s second law or, equivalently, the law of conservation of the
angular momentum valid for motion in any central field (see Chapter 7). At both the initial point P
and apogee A, the velocity vector is perpendicular to the radius vector r, and the magnitude of the
vector product of the velocity and radius vectors at these points equals the product of magnitudes
of v and r (since the sine of the angle between v and r equals 1):

v0r0 = vArA, (6.16)

where vA is the velocity at the apogee. The second equation that is necessary for determination
of two unknown quantities vA and rA is obtained by equating the values of the total energy at the
initial point and at the apogee:

v2
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2
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=

v2
A

2
− GM
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.

Using Eq. (6.16), we then express the velocity vA at apogee in terms of the initial velocity
v0 and the distances r0 and rA, and substitute it in the equation of the conservation of energy.
Gathering the terms with v0 on the left side of the equation, and moving the remaining terms to
the right, we obtain:
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.
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We can find the unknown distance from the center of the planet to the apogee, rA, by solving
this quadratic equation. One of its roots, rA = r0, corresponds to the initial point (to perigee).
This irrelevant root appears because the condition that we used for obtaining the equation, namely
that the velocity vector be orthogonal to the radius vector, is satisfied also for the initial point
(as well as for the apogee). In order to find the second root, the root that corresponds to the
apogee, we express the difference of squares in the left side of the equation as the product of the
corresponding sum and difference, and then divide both sides of the equation by (1−r0/rA). Then
for the distance rA to the apogee of the orbit we obtain:

rA =
r0

2(vc/v0)2 − 1
. (6.17)

Here we have used Eq. (6.7) for the circular velocity vc at the initial distance r0. The obtained
expression is convenient for determination of parameters of the elliptical orbit in terms of the initial
distance r0 and the initial transverse velocity v0. Figure 6.3 illustrates how the orbit depends on
the initial velocity.

Figure 6.3: Orbits of satellites launched from the same initial point with different values of the
initial velocities. Small circles indicate the second foci of the ellipses.

In the case v0 = vc we have from Eq. (6.17) rA = r0, that is, the satellite moves in this case
along a circular orbit whose radius equals r0 (orbit 1 in Figure 6.3).

The apogee distance rA increases as we increase the initial velocity (orbits 2 – 5 in Figure 6.3).
As the initial velocity approaches the value vesc =

√
2vc of the escape velocity, a tiny increment in

the initial velocity causes a large increment in the apogee distance.
At v0 =

√
2vc the elliptical orbit elongates without limit, and its apogee recedes to infinity.

The ellipse becomes a parabola.
For values of the initial velocity greater than the escape velocity, the trajectory of the satellite

is a hyperbola. In this case, Eq. (6.17) is not applicable because we assumed in its derivation that
the motion is finite.

If the initial velocity v0 is smaller than the circular velocity vc for the given initial distance r0,
we obtain from Eq. (6.17) for rA a value that is smaller than the initial distance r0. This means
that in this case the initial point is the apogee of the orbit, while the value rA given by Eq. (6.17)
is the distance from the focus to the perigee, which in this case is located at the opposite end (with
respect to the initial point) of the major axis passing through the initial point and the center of
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the earth (orbit 6 in Figure 6.3). Certainly, motion along the whole of such an orbit is possible
only if rA > R, that is, if the perigee is outside the earth so that the orbit does not intersect the
earth’s surface.

The eccentricity of the elliptical orbit in terms of the transverse initial velocity, with the help
of Eq. (6.17), is expressed as:

e =
|rA − r0|
rA + r0

=
∣∣∣∣
v2
0

v2
c

− 1
∣∣∣∣ . (6.18)

The semimajor axis a of the elliptical orbit is given by:

a =
1
2
(r0 + rA) =

r0

2
1

1− v2
0/(2v2

c )
. (6.19)

If v0 = vc, this equation gives a = r0, since the ellipse becomes a circle, and the semimajor
axis coincides with the radius of the orbit. If v0 →

√
2vc, that is, if the initial velocity approaches

the escape velocity, Eq. (6.19) gives a →∞: the ellipse is elongated without limit. If v0 → 0, Eq.
(6.19) gives a → r0/2: as the horizontal initial velocity becomes smaller and smaller, the elliptical
orbit shrinks and degenerates into a straight line connecting the initial point and the center of
force. The foci of this degenerate, flattened ellipse are at the opposite ends of the line.

6.6 Satellite in the Atmosphere

Air resistance experienced by a satellite in the rarefied strata of the upper atmosphere is caused
by collisions between the satellite and air molecules. These collisions cause an exchange of energy
and momentum between the satellite and air molecules, and lead to a gradual dissipation of the
total mechanical energy of the satellite.

In thermal equilibrium of the atmosphere, molecules of air move chaotically and continually
collide with one another. If the mean free path covered by a molecule between successive collisions
is much smaller than the linear dimensions of the satellite, we can treat the air as a continuous
medium. When a body moves through a continuous medium, a boundary layer is formed around
the surface of body. Within this layer the velocities of the molecules of air are generally different
from the velocities at large distances from the body, where the medium remains undisturbed. That
is, the body partly involves in its motion the substance of the medium within the boundary layer.

The mean free path between collisions depends on the density of the gas. For the values
of the density of air at the altitudes 160 – 200 km and higher, the mean free path is greater
than the dimensions of a typical satellite by at least an order of magnitude. Thus no boundary
layer is formed around the moving satellite. Any gas molecule, after an elastic collision with the
satellite, flies unhindered so far from the satellite that its next collision most likely occurs with a
molecule of air undisturbed by the satellite. In other words, we may regard air resistance at this
altitude to be the result of individual collisions between the satellite and separate molecules of a
macroscopically stationary gas rather than an ordinary friction experienced by a body that moves
through a continuous medium. These separate molecules of air that the satellite meets on its way
are in random thermal motion characterized by Maxwell’s distribution of speeds of the undisturbed
gas in the state of thermal equilibrium.

To support these conclusions, next we make simple numerical estimates. To evaluate the
mean free path λ of the molecule of air, we assume the molecule to be a sphere with a diameter
d ≈ 3 · 10−10 m. When the molecule moves through the distance λ in the gas, on the average it
collides with another molecule only once. Thus in a cylinder of length λ and cross-sectional area
πd2 on the average there is only one molecule of the gas. Therefore,
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nπd2λ ≈ 1, (6.20)

where n is the concentration, that is, the mean number of molecules per unit volume. We note
that the mean free path λ is determined only by the diameter of molecules and their concentration,
and is independent of the velocity of molecules.

At an altitude of about 200 km, the density ρ of air is approximately 10−9 kg/m3. Since the
mean mass of one mole of the air (mainly a mixture of nitrogen and oxygen) is µ = 0.029 kg/mol,
we obtain a value n = NAρ/µ ≈ 2 · 1016 1/m3 for the concentration of the air molecules (here
NA = 6.02 ·1023 1/mol is Avogadro’s number). With these values of concentration n and molecular
diameter d, Eq. (6.20) gives a value λ ≈ 200 m for the mean free path. Since the mean free path
of the air molecules in the upper atmosphere is much greater than the linear dimensions of an
ordinary artificial satellite, we may consider air resistance to be caused by collisions of the satellite
with individual air molecules.

The effect produced on a satellite by an immense number of collisions with the air molecules can
be described on a macroscopic scale by introducing a resistive force that acts continuously on the
satellite. This force depends on the speed of the satellite through the medium. This dependence
is generally different for small and large speeds.

If a body moves slowly through the stationary air, so that the velocity V of the body is much
smaller than the average speed 〈v〉 of random thermal motion of the gas molecules, we can find
the friction by using methods similar to those in the calculation of the pressure exerted by a gas
on the wall of its container. Molecules striking the front of the body are more numerous, and on
the average impart a greater momentum to the body in every impact, than do molecules that are
bombarding the body from the back.

As a consequence, the pressure of the air exerted on the front of the moving body is greater
than on the back. It can be shown from Maxwell’s distribution of molecular velocities that in this
case the force of friction is proportional to the first power of the velocity V of the body.

On the other hand, we show below that if the velocity V of the body is much greater than the
mean thermal speed 〈v〉 of the gas molecules, air resistance is proportional to the square of the
velocity V .

The mean thermal speed of the gas molecules 〈v〉 at atmospheric temperatures is approximately
500 m/s and so is small compared with the orbital velocity V of a satellite (≈ 8 km/s). Hence we
can ignore the thermal motion of the gas molecules in estimating the force of air resistance. In
other words, we can assume that the satellite in its motion collides with stationary molecules of
air. The interaction with the air takes place only on the front surface of the satellite.

For simplicity, we assume that collisions of the air molecules with the surface of the satellite
are elastic. If the front surface is perpendicular to the velocity of the satellite, a momentum 2mV
is transmitted to each molecule in a single collision. The number of such impacts per unit time
equals the number of air molecules in a cylinder whose length equals the velocity V of the satellite,
and whose base equals the area A of the front surface (more generally, the cross-sectional area) of
the satellite. Thus, the number of impacts per unit time equals the product of the concentration
n times the volume V A of the cylinder.

The average force F exerted by the satellite on the atmosphere is the total momentum imparted
to the air molecules per unit time:

F = 2nmV 2A = 2ρV 2A. (6.21)

According to Newton’s third law, an equal and opposite force is exerted on the satellite. This
force of air resistance is proportional to the square of the velocity. For example, if ρ ≈ 10−9 kg/m3,
A ≈ 1 m2, and the satellite moves with a velocity of V ≈ 10 km/s, Eq. (6.21) yields that the
force of air resistance approximately 0.2 N. Such a force, acting on a body of mass M ≈ 103 kg,
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produces a deceleration of approximately 2 ·10−4 m/s2. (However, we remember that air resistance
is not the only force acting on the satellite. It, in conjunction with the force of gravity, causes the
satellite to speed up as its orbit decays in the upper atmosphere. This aerodynamical paradox of
the satellite is discussed in Chapter 2.)

The simplifying assumptions that the front surface of the satellite is perpendicular to the
velocity, and that collisions of air molecules with the surface are elastic, actually are not very
important for validity of the above estimate of air resistance. In a completely inelastic collision, the
momentum transmitted to the air molecule is half the value we have used above, and, consequently,
the force of air resistance is somewhat smaller. In the case of completely inelastic collisions, the
shape of the satellite does not influence the force; only its cross-sectional area is important. For a
spherical satellite, it can be shown that the force of air resistance is the same both for completely
elastic and inelastic collisions with air molecules.

∗ ∗ ∗
Space-age flights have shown us that the atmosphere extends only to an altitude of about one

hundred kilometers. This layer of air is very thin compared to the earth’s radius, and its density
decreases rapidly with altitude. The earth’s atmosphere is a gas placed in an open “vessel without
a cover.” Nothing keeps the air from escaping into outer space except the gravitational field of the
earth. This field determines the dependence of the air density on the altitude.

For a planet with a “thin” atmosphere whose upper limit h is much smaller than the planet’s
radius R (h ¿ R), we can assume the strength of the gravitational field g of the planet to be
approximately constant throughout the atmosphere. For an atmosphere that is held by a uniform
gravitational field, the dependence of density on height in the state of thermal equilibrium obeys
Boltzmann’s distribution law:

ρ = ρ0 exp(−mgh/kT ). (6.22)

Here ρ0 is the density of air at sea level (at h = 0), m is the mass of an average air molecule (≈ 29
a.m.u. for the earth’s atmosphere), g is the strength of the gravitational field near the surface
of the planet, or the acceleration of free fall (9.8 m/s2 for the earth), k is Boltzmann’s universal
constant (k = 1.38 · 10−23 J/K), and T is the absolute temperature. Equation (6.22) states that
the density of air decreases exponentially with altitude.

Comparing Eq. (2.4) of Chapter 2 and Eq. (6.22), we obtain for the characteristic height (or
thickness) of the atmosphere the following expression:

H = kT/mg. (6.23)

For the earth, substituting in Eq. (6.23) the corresponding values and assuming the equilibrium
temperature of the atmosphere to be 25◦C ≈ 300 K, we find H = 8.8 km. This value is very small
compared with the earth’s radius R: H/R ≈ 0.0014. This estimate shows that the approximation
of a uniform gravitational field throughout the earth’s atmosphere is quite good. The assumption
concerning the thermal equilibrium of the atmosphere is not so good. An improvement of this
simplified model of the atmosphere is achieved if the characteristic height H is considered as a
function of the altitude h because the air temperature T changes (decreases) with the altitude.
For the altitudes h < 120 km the value of H varies between 5 km and 10 km. Over the altitude of
120 km the air density decreases more slowly with height, and the value of H increases up to 30 –
40 km.

In the computer simulation, we can vary the value of H widely. To make the effects of air
resistance on the trajectories of satellites easily observable, we should enter exaggerated values for
the height of the atmosphere.
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6.7 Trajectories of a Landing Module

For a safe return to the earth, a landing module should approach the dense strata of the atmosphere
at a very small angle with the horizontal. A steep descend is dangerous because air resistance causes
rapid heating of the module and, in the case of a manned spacecraft, because the astronauts
may experience large g-factors. Therefore the descending trajectory should just graze the upper
atmosphere.

We consider two possible impulse maneuvers to transfer the landing module from an initial cir-
cular orbit into a suitable descending trajectory: (a) the change in velocity is directed tangentially,
antiparallel to the orbital velocity, and (b) the change in velocity is directed radially, perpendicular
to the orbital velocity.

In any case, an additional velocity transfers the space vehicle from the initial circular orbit to
an elliptical orbit. One of the foci of the ellipse is located, in accordance with Kepler’s first law,
at the center of the earth.

Figure 6.4: Possible maneuvers to transfer the landing module from a circular orbit to a trajectory
grazing the planet.

In case (a), the short-term impulse thrust of the rocket engine changes only the magnitude
of the orbital velocity, preserving its direction. Therefore, at the point where the rocket engine
operates (point D in Figure 6.7), the descending elliptical orbit has a common tangent with the
original circular orbit. This point D is the apogee of the elliptical orbit. Its perigee is located at
the opposite end P of the major axis, that passes through D and the center of the earth. At this
point P the ellipse should graze the dense strata of the atmosphere.

To calculate the additional velocity ∆v (the characteristic velocity) that is necessary for the
transition from the circular orbit to this descending elliptical trajectory, we make use of the con-
servation laws for energy and angular momentum.

We let vD = vc − ∆v be the velocity at the apogee D of the elliptical orbit (here vc is the
constant velocity in the original circular orbit), and vP be the velocity at the perigee P , where
the ellipse grazes the globe. Then we write the laws of the conservation of energy and angular
momentum for these points D and P :

v2
D

2
− GM

r0
=

v2
P

2
− GM

R
; r0vD = RvP . (6.24)

Here r0 is the radius of the original circular orbit, R is the earth’s radius (including the atmosphere),
and M is the mass of the earth. Substituting vP from the second equation into the first, we obtain:



CHAPTER 6. PHENOMENA AND CONCEPTS 128

v2
D

(
1− r2

0

R2

)
=

2GM

r0

(
1− r0

R

)
. (6.25)

Dividing both parts of Eq. (6.25) by (1− r0/R), we find the required value vD of the velocity
at the apogee of the elliptical orbit:

vD =
√

2GM

r0

1√
1 + r0/R

. (6.26)

The first radical in the right side of Eq. (6.26) can be expressed in terms of the circular velocity
vc for the original orbit: vc =

√
GM/r0. To find the value ∆v of the required change in velocity,

we subtract vD from the circular velocity vc:

∆v = vc − vD = vc

(
1−

√
2

1 + r0/R

)
. (6.27)

For a low circular orbit, whose height h = r0 − R is much smaller then the earth’s radius R
(for h ¿ R), the exact expression given by Eq. (6.27) can be transformed into a simpler and more
convenient (though approximate) form. We substitute r0 = R + h into Eq. (6.27), and write the
square root there as:

√
2

1 + r0/R
=

√
2

2 + h/R
=

1√
1 + h/(2R)

≈ 1− h

4R
.

Thus, from Eq. (6.27) we obtain the following approximate formula for calculation of the required
additional (characteristic) velocity:

∆v = vc
h

4R
. (6.28)

For example, if the height h of the circular orbit is 0.1 R ≈ 650 km, the additional velocity ∆v,
according to Eq. (6.28), must be about 2.5% of the circular velocity. (A calculation on the basis
of Eq. (6.27) with r = R + h = 1.1 R gives a more exact value of 2.41%.)

In case (b) the additional velocity imparted to the space vehicle is directed radially, transverse
to the orbital velocity, and both the magnitude and direction of the velocity change. Therefore the
new elliptical orbit intersects the original circular orbit at point B (see Figure 6.7) at which the
additional velocity ∆v is imparted to the landing module. For a soft landing, the new elliptical
trajectory of descent must also graze the earth (the upper atmosphere) at the perigee P of the
ellipse.

The laws of conservation of the energy and the angular momentum for points B and P in this
case can be written as:

v2
c + (∆v)2

2
− GM

r0
=

v2
P

2
− GM

R
; vcr0 = vP R. (6.29)

Here the velocity vP at the perigee, as well as the additional velocity ∆v, clearly have values
different from those in Eq. (6.24). We note that the constant areal (sectorial) velocity in Eq. (6.29)
for the descending elliptical trajectory has the same value as it does for the original circular orbit
because an additional radial impulse from the rocket engine does not change the angular momentum
of the landing module.

Substituting vP = vcr0/R into the first Eq. (6.29) and taking into account that GM/r0 = 2v2
c ,

we obtain
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v2
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.

Substituting r = R + h in this equation, we finally obtain:

∆v = vc
h

R
. (6.30)

A comparison of Eqs. (6.28) and (6.30) shows that for the second method (b) the required
additional velocity is approximately four times greater than that for the first method (a). For
example, it must equal 10% of the circular velocity if the height h of the circular orbit is 0.1 R.

The angular distance between the starting point B and the point of landing for method (b) is
90◦ (a quarter of the revolution), while for method (a) the angular distance between the point of
transition from the circular orbit to the descending trajectory and the landing point is twice as
large (180◦, a half of the revolution).

In order to transfer the landing module to the trajectory that just grazes the earth, using a
transverse impulse, we can impart an additional velocity to the module not only downward but
also vertically upward (see Figure 6.7). It is clear from considerations of symmetry that in this case
the required additional velocity ∆v has the same magnitude as it does for the downward impulse.
However, to land at the same point P on the earth, the upward impulse must be imparted to the
module at the opposite point of the original circular orbit (point C in Figure 6.7). The angular
distance between point C of the transition to the elliptical orbit and point P of the landing in this
case is 270◦ (three quarter of a revolution). The module at first rises higher. Then, only after it
passes through the apogee of its elliptical orbit (point A in Figure 6.7), does it begin to descend
towards the earth’s surface.

6.8 A Space Probe

In certain problems of space dynamics, the relative motion of the orbiting bodies is important.
As an example, we consider a space probe launched from an orbital station in order to investigate
the surface of some planet or interplanetary space. We assume that the station stays in a circular
orbit around the planet. The probe (an automatic or manned space module with various scientific
instruments) is to approach the surface of the planet, and, after exploring the planet from a short
distance and accumulating data, is to convey the data to the station.

To complete this mission successfully, a suitable elliptical orbit of the probe must have a suffi-
ciently low perigee in order to approach the surface of the planet. Moreover, its period of revolution
in its elliptical orbit must be commensurable with the period of the station: The space probe pe-
riodically meets with the station if their periods are in the ratio of small integers. If, for example,
the periods of revolution of the probe and the station are in the ratio of 2 to 3, the probe after
three revolutions returns to the common point of their orbits simultaneously with the station, just
when the station has completed two revolutions. Examples of suitable inner orbits of the space
probe are illustrated by Figures 3.6 and 3.7 (see Chapter 3).

Next we calculate the additional (characteristic) velocity that must be imparted to the space
probe after its undocking from the station in order to transfer the probe to the elliptical orbit
with the required period of revolution. If the additional velocity is directed tangentially to the
circular orbit of the station, the semimajor axis a of the elliptical orbit of the probe is determined
by Eq. (6.19). With the help of this equation, we can express the square of the planetocentric
initial velocity v0 of the probe at the common point of the two orbits in terms of the semimajor
axis a:
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v2
0 = v2

c

(
2− r0

a

)
. (6.31)

This expression is valid both for the case of an initial velocity greater than the circular velocity,
v0 > vc, and the case v0 < vc. The latter case corresponds to the additional velocity ∆v imparted
to the space probe in the direction against the orbital velocity of the station. In this case the entire
elliptical orbit of the probe lies inside the circular orbit of the station. The starting point at which
the probe is undocked from the station is the apogee of such an inner-grazing elliptical orbit.

Next we can express in Eq. (6.31) the ratio r0/a in terms of the given ratio of the period T0 of
the station to the period T of the probe in its elliptical orbit with the semimajor axis a. We do
this with the help of Kepler’s third law:

r0

a
=

(
T0

T

)2/3

. (6.32)

Hence, after the undocking, the space probe must have the following planetocentric velocity:

v0 = vc

√
2− (T0/T )2/3. (6.33)

Table 6.1 lists the values of the initial velocity v0 of the space probe and the corresponding
values of the additional (characteristic) velocity ∆v = |v0 − vc| for several inner elliptical orbits of
the probe. (These velocities are expressed in units of the circular velocity v0 of the orbital station
for convenience of usage in the simulations.) The perigee distance rP = 2a − r0 for each of the
orbits (in units of the radius r0 of the station’s circular orbit) is also listed. An orbit is possible
if this distance is greater than the radius R of the planet. The difference rP − R is the minimal
distance from the surface of the planet reached by the space probe.

Table 6.1: Inner orbits of the space probe

T0/T v0/vc ∆v/vc rP /r0

2/1 0.64234 0.35766 0.25992
3/2 0.83050 0.16956 0.52629
4/3 0.88802 0.11198 0.65096
5/4 0.91630 0.08370 0.72355

If the additional velocity imparted to the probe is directed forward, tangentially to the orbit of
the station, the resulting elliptical orbit encloses (circumscribes) the circular orbit of the station.
The initial point at which the orbits graze one another is the perigee of the elliptical orbit. Such
outer orbits of space probes with suitable periods of revolution may be used to investigate the
interplanetary space. Examples of the outer orbits are illustrated by Figure 3.8 of Chapter 3.

Table 6.2 lists the values of the initial velocity v0 of the space probe and the corresponding
values of the additional velocity ∆v = v0 − vc for several outer elliptical orbits of the probe. The
apogee distance rA = 2a − r0 for each of the orbits (the greatest distance of the probe from the
center of the planet) is also listed.

If the additional velocity ∆v is imparted to the probe in the radial direction (vertically up or
down), the period of revolution is always greater than the period of the orbital station. Applying
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Table 6.2: Outer orbits of the space probe

T0/T v0/vc ∆v/vc rA/r0

4/5 1.066876 0.06688 1.32079
3/4 1.083752 0.08375 1.42282
2/3 1.112140 0.11214 1.62074
1/2 1.170487 0.17049 2.17480

to this case the laws of the conservation of energy and angular momentum (Kepler’s second law),
and taking into account that a radial impulse of the rocket thrust does not change the angular
momentum of the space probe, we can obtain the following expressions for the distances of the
apogee and perigee of the elliptical orbit from the center of the planet:

rA =
r0

1−∆v/vc
; rP =

r0

1 + ∆v/vc
. (6.34)

Therefore, the semimajor axis of the elliptical orbit of the space probe depends on the magnitude
∆v of the transverse additional velocity as follows:

a =
1
2
(rA + rP ) =

r0

1− (∆v/vc)2
. (6.35)

Suitable orbits for the space probe must have certain periods of revolution. We can use Kepler’s
third law r0/a = (T0/T )2/3 to calculate the additional velocity ∆v that gives an orbit with the
required period of revolution T . With the help of Eq. (6.35), we obtain

(
∆v

vc

)
= 1−

(
T0

T

)2/3

. (6.36)

For example, to obtain the orbit of the space probe with a period that is one-and-a-half periods
of the orbital station (T0/T = 2/3), the required additional velocity ∆v calculated from Eq. (6.36)
is 0.48668 vc. Such a probe returns to the station after every two revolutions in its elliptical orbit.
During this time the station makes three revolutions in its circular orbit. Such an elliptical orbit
is shown in Figure 3.9 of Chapter 3.

For T0/T = 4/5 Eq. (6.36) gives ∆v/vc = 0.37179. In this case the space probe and the station
meet after every four revolutions of the probe and five revolutions of the orbital station.

6.9 Space Rendezvous

The laws of the conservation of energy and angular momentum, together with Kepler’s laws of
motion in a central Newtonian gravitational field, can be used in calculating the maneuvers required
for a planned space flight between two circular orbits, and for an approximate calculation of an
interplanetary flight.

Next we consider a semielliptic Hohman’s transition between two circular orbits. We assume
for definiteness that we wish to launch a spacecraft from an orbital station that moves around a
planet in a circular orbit of radius r0 into an outer circular orbit of radius, say, 2r0. After the
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spacecraft remains for some time in this new orbit, it is to return to the station and dock to
it. The simulation experiment for such maneuvers is described in Chapter 3 of the Manual (see
Figure 3.10). Here we present the calculations for the characteristic velocity and for the times at
which the maneuvers take place.

The ellipse of the semielliptic transitional trajectory that ensures the most economical transition
(in expending rocket fuel) grazes both the initial circular orbit (from the outside) and the final
circular orbit (from the inside). Hence the perigee distance from the center of the planet equals r0,
the radius of the initial orbit, and the apogee distance equals 2r0, the radius of the final circular
orbit. To calculate the velocity v0 that the spacecraft must have at perigee of the semielliptic
transitional trajectory, we can use Eq. (6.17):

v0 = vc

√
2

1 + r0/rA
. (6.37)

Here rA is the apogee distance of the elliptical orbit from the center of the planet. To find the
required additional velocity ∆v1 for the first maneuver, we subtract from v0, Eq. (6.37), the circular
velocity vc which the spacecraft already has after undocking from the station:

∆v1 = vc

(√
2

1 + r0/rA
− 1

)
. (6.38)

Substituting rA = 2r0, we obtain from Eq. (6.38) ∆v1/vc = 2/
√

3− 1 = 0.1547.
The spacecraft comes to the apogee with a velocity vA, whose value is related to the velocity

v0 at the perigee, Eq. (6.37), through the law of the conservation of angular momentum (Kepler’s
second law):

v0r0 = vArA.

For rA = 2r0 we find, with the help of Eq. (6.37), vA = v0/2 = 0.577 vc. To transfer the spacecraft
from the elliptical orbit to the circular orbit of radius 2r0, we must increase the velocity at apogee
by a second jet impulse. The circular velocity in a given central Newtonian gravitational field
is inversely proportional to the square root of the radius of the circular orbit. For the orbit of
radius 2r0, the circular velocity equals vc/

√
2 = 0.707 vc, where vc is the circular velocity for the

original orbit of radius r0. Subtracting from this value the velocity vA = 0.577 vc, with which the
spacecraft reaches the apogee of the elliptical orbit, we find the additional velocity ∆v2 required
for the second maneuver: ∆v2/vc = 0.707− 0.577 = 0.130.

Next we calculate the times at which these maneuvers take place. We can do so with the help
of Kepler’s third law. The semimajor axis a of the elliptical orbit equals (r0 + rA)/2 = (3/2)r0.
We call the period of revolution along the original circular orbit (orbit of the station) T0. Then
the period for the elliptical orbit equals (a/r0)3/2 T0 = 1.53/2 T0 = 1.837 T0. If we assume t1 = 0
for the first jet impulse, the second jet impulse must be imparted to the spacecraft after a lapse of
one-half the period for the elliptical orbit, that is, at t2 = 0.9186 T0.

During the lapse of time t = t2 − t1 taken for the transition, the radius vector of the station
rotates through an angle (2π/T0)t radians. Since the radius vector of the spacecraft turns during
this semielliptic transition through the angle π, at the instant of the second maneuver the spacecraft
lags behind the station by an angle α = (2π/T0)t− π = 2π(0.9186− 0.5) = 2π · 0.4186 radians.

After the spacecraft remains for a while in its new circular orbit, it is to return to the orbital
station. The optimal return path between the two circular orbits is again semielliptic. The ad-
ditional velocity ∆v3 in the jet impulse that transfers the spacecraft from the outer orbit to the
semielliptic transitional trajectory is directed against the orbital velocity. It is clear from symmetry
that in magnitude the additional velocity this time must be exactly the same as for the preceding
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transition from the elliptical trajectory to the outer circular orbit, that is, ∆v3 = ∆v2 = 0.130 vc.
And when the spacecraft reaches the perigee of the elliptical trajectory where it grazes the inner
circular orbit, one more jet impulse is necessary to quench the excess velocity. This time the
additional velocity ∆v4 must have the same magnitude as it does for the first transition from the
initial circular orbit to the semielliptic trajectory: ∆v4 = ∆v1 = 0.1547 vc.

However, the return journey of the spacecraft is complicated by the fact that it is not sufficient
to simply transfer the spacecraft to the original inner circular orbit. The spacecraft must reach
the grazing point of the transitional semielliptic trajectory and the inner circular orbit just at the
moment when the orbital station arrives at this point. To ensure the rendezvous, we must choose
a proper moment for the transition from the outer orbit to the semielliptic return path. What
should the system configuration be at this moment?

During the direct transition to the outer orbit, the spacecraft lagged behind the station by
an angle α = 2π · 0.4186 radians (α is the angle between the radius vectors of the station and
the spacecraft at t = t2). The journey back takes place during the same lapse of time as does
the journey out. Consequently, in order to meet with the station, the spacecraft must begin its
journey back at that moment when the station is behind the spacecraft by the same angle α.

Letting T be the period of revolution of the spacecraft along the outer circular orbit, it follows
from Kepler’s third law that T = 23/2 T0 = 2.83 T0, since the radius of the outer orbit is 2r0. Calling
∆ω the difference between the angular velocity 2π/T0 of the station and the angular velocity 2π/T
of the spacecraft, we have that ∆ω = (2π/T0) · 0.646. The angular distance β(t) between the
station and the spacecraft at an arbitrary time t > t2 is determined by the expression:

β(t) = ∆ω(t− t2) + α, (6.39)

since at t = t2 this angular distance equals α. To calculate the time t3 suitable for starting
the return journey, we require that at the moment the station be behind the spacecraft by α.
Consequently, the angle β given by Eq. (6.39) should be made equal to 2πn − α, where n is an
integer:

2πn− α = ∆ω(t3 − t2) + α. (6.40)

Since α = 2π · 0.4186 radians, we find from Eq. (6.40) that the time t3 − t2 during which we
can stay in the outer circular orbit is given by:

t3 − t2 = T0(n− 0.8372)/0.646. (6.41)

For n = 1 Eq. (6.41) gives t3 − t2 = 0.252 T0. During this interval the spacecraft covers only
a small part of the outer orbit. And so if the spacecraft is to remain longer, we let n = 2 in
Eq. (6.41) to find that t3 − t2 = 1.7987T0. The period of revolution for the outer circular orbit
equals 23/2 T0 = 2.83 T0, and so with n = 2 the spacecraft covers a considerable part of the orbit. If
we are satisfied with this duration, the third maneuver must be performed at t3 = t2 +1.7987 T0 =
2.7174 T0. Adding the duration 0.9186 T0 of motion along the semielliptic trajectory, we find the
moment t4 at which the rendezvous of the spacecraft with the station occurs: t4 = 3.636 T0. At
this moment the fourth jet impulse of a magnitude ∆v4 = ∆v1 = 0.1547 vc must be imparted to
the spacecraft in order to equalize its velocity with the orbital velocity of the station.

The discussion above illustrates how space maneuvers are calculated using Kepler’s laws and
the laws of conservation of energy and angular momentum. These calculations can be tested using
the simulation programs described in Part I of the Manual. Figure 3.10 of Chapter 3 illustrates
the particular maneuvers calculated above.
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6.10 Kepler’s Laws and the Solar System

As mentioned above, the true shape of planetary orbits was discovered through trial and error by
Johannes Kepler in about 1610, from the careful, laborious and prolonged astronomical observa-
tions of Tycho Brahe. According to Kepler’s first law, the orbits of planets are ellipses with the
sun at one focus of the ellipse. Although the law was originally established for planetary motion,
it is also valid for any motion under a central force of attraction that decreases as the square of the
distance from the center of force. In particular, the free motion of natural and artificial satellites
around the earth and other planets also obeys Kepler’s first law: Their orbits are ellipses or circles.

The orbit of a celestial body is exactly an ellipse in the idealized case of motion under the action
only of an inverse-square force. The dynamical explanation of Kepler’s first law was first given by
Isaac Newton on the basis of his laws of motion (Newton’s second law) and the law of universal
gravitation. An analytic derivation of Kepler’s first law is given in Chapter 7 of the Manual.

For the planets of our solar system, Kepler’s first law is a good zeroth-order approximation
because the masses of planets are small compared to the mass of the sun, and the planets are
separated from one another by large distances. That is, with good precision we can neglect the
forces of gravitation between the planets and consider their motion to be governed only by their
attraction to the sun. Hence, because of the structure of our solar system, the motion of each of
the planets is rather simple.

Many stars in our Galaxy are multiple systems—double and triple stars, unlike the sun, which
is a single star. However, stable planetary orbits are also possible in a multiple star system,
and it is conceivable that a community of animated, thinking creatures could arise on such a
planet. Because trajectories of planets in a double star system are very complicated, it would be
an immensely difficult problem for astronomers among those creatures to establish the kinematic
laws of planetary motion in the double star system, and even a much more difficult problem would
be to discover that these complex kinematical laws are generated by the simple inverse-square
law of gravitational attraction to each of the stars. Our civilization must be grateful to whatever
powers that may control its destiny for the happy circumstance of a planet orbiting a single star.
Humankind has been lucky to travel so fast along the thorny road of knowledge.

∗ ∗ ∗
One of the simulation programs deals with a planet orbiting a double star. If the mass of the

planet is small compared with the masses of the primaries, the influence of the planet on them
is negligible. Such a system is an example of the restricted three-body problem. Although the
components of the double star execute rather simple periodic Keplerian motions around the center
of mass of the system, the motion of the planet may be very complicated. In the general case, it is
impossible to obtain an analytic solution to the problem. The absence of such a solution probably
reflects the complexity of the possible motions of the system rather than the weakness of the
analytic capability of the mathematics. The simulation programs enable one to experiment with
various external planetary orbits (those which encompass both stars) and internal orbits (those
encompassing only one of the stars). The simulations display just how complicated the motion of
such a planet can be, in spite of the simplicity of the fundamental laws of physics that govern this
motion.

6.11 An Approximate Approach to the Restricted Three-
Body Problem

The motion of planets around the sun is almost entirely governed by their attraction to the sun.
Masses of the planets of the solar system are small compared to the mass of the sun, and so the



CHAPTER 6. PHENOMENA AND CONCEPTS 135

gravitational forces between the planets cause rather small deviations from Kepler’s laws. In the
case of a single star with a single orbiting planet, the motion is exactly Keplerian.

But what can we say about the motion of a satellite orbiting a planet? To what extent can
we consider this motion to be Keplerian? Besides the gravitational attraction to the planet, the
satellite is subjected to the gravitational attraction to the sun. For example, a simple calculation
shows that the force of gravitational attraction to the sun of our moon is greater than the force of
its attraction to the earth. Does it make sense to say that the moon orbits the earth in spite of
the fact that the attraction of the moon to the sun is greater than to the earth?

To answer this question, we should remember that in our description the motion of a satellite
is referred to a reference frame associated with the planet rather than with the sun. However,
the reference frame associated with the planet is not an inertial one. Together with the planet, it
is subjected to the acceleration directed towards the sun. When the satellite is not far from the
planet, the gravitational pull of the sun gives the satellite almost the same acceleration as does
the sun give to the planet itself. Indeed, in a uniform gravitational field, all bodies (in our case—
the satellite and the planet) have equal accelerations independently of their masses. This follows
from the equivalence of gravitational and inertial masses. The force of gravity exerted on a body
is proportional to its gravitational mass, while the acceleration produced by a force is inversely
proportional to its inertial mass.2

Hence the influence of the sun on the motion of satellites relative to the planet is not very signif-
icant, and so in its principal features, this motion is described by Kepler’s laws. The gravitational
attraction of a satellite towards the sun reveals itself only as a perturbation in the acceleration
of the satellite. This perturbation is equal not to the acceleration produced by the attraction of
the satellite to the sun, but rather to the difference of the accelerations of the satellite and the
planet, produced by the gravitational field of the sun. Since these accelerations are almost equal,
their difference is small compared to the acceleration of the satellite produced by its gravitational
attraction to the planet.

In other words, Keplerian orbital motion of the satellite around the planet is actually perturbed
not by the gravitational field of the sun by itself, but rather by the nonuniformity of this field. In
our everyday life on the earth, this nonuniformity of the gravitational field of the sun, as well as
the nonuniformity of the gravitational field of the moon, reveals itself in the ocean tides. The tidal
force (the differential gravitational force), in contrast to the total gravitational force, decreases as
the cube, not the square, of the distance between two bodies.

Because the orbits of artificial satellites of the earth are relatively small, the nonuniformity
of the gravitational field of the sun is rather insignificant. Therefore, calculating the motion of
a satellite relative to the planet, we can consider its gravitational attraction only by the planet
as a first approximation. In other words, the motion of a satellite around the planet can be
analytically investigated to the first approximation as a restricted two-body problem, which has
an exact solution. For a satellite whose mass is negligible compared to the mass of the planet, this
relative motion is simply a Keplerian motion in a Newtonian central gravitational field. The orbit
of a satellite around the planet can be regarded to the first approximation as an ellipse or a circle,
and the infinite trajectory of a spacecraft bypassing a planet can be regarded, in the neighborhood
of the planet, as a segment of a parabola or a hyperbola.

The complicated looping trajectory of a satellite in the heliocentric frame of reference is ex-
plained by addition of two simple motions: motion along a large circle (or an ellipse) in which the
satellite follows the planet around the sun, and the simultaneous revolution of the satellite about
the planet along a much smaller circle (or smaller ellipse).

We call the exact Keplerian motion of a satellite relative to a planet as an unperturbed motion.
2Or, vice versa, one may treat the equality of accelerations acquired by all bodies in a given gravitational field

(reliably established experimentally with great accuracy) as an experimental evidence for the equivalence of the
inertial and gravitational masses.
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Motion of satellites in low orbits that pass not far from the planet can be considered as an un-
perturbed Keplerian motion with rather good precision. However, for large distances of a satellite
from the planet, the perturbing influence caused by the nonuniformity of the gravitational field of
the sun on the motion of the satellite around the planet becomes important.

Therefore a problem arises concerning the determination of the region around the planet within
which the motion of a satellite can be considered as unperturbed. Such a region is called the
sphere of gravitational action of the planet with respect to the sun. A definition of the sphere of
gravitational action and a derivation of its radius is found in Chapter 7.

The concept of the sphere of gravitational action of a smaller celestial body with respect to a
heavier one proves to be very helpful in obtaining approximate solutions to the restricted three-body
problem. The calculation of the trajectory for a space expedition from the earth to the moon gives
an example of such a problem.

In the restricted three-body problem, the motion of the light body (e.g., a spacecraft, whose
mass is assumed to be zero) is the most interesting. This motion occurs under the forces of
gravitation created by the two massive bodies whose motion can be considered as known. As
we already mentioned, even the restricted three-body problem does not have a general analytic
solution.

An approximate solution to the restricted three-body problem can be obtained by the method
of joined conic sections. The principal idea of the method is to ignore the influence of the second
massive celestial body on the motion of the spacecraft until the latter enters the sphere of grav-
itational action of this body. In other words, we consider the motion in the frame of reference
associated with the larger massive body as an unperturbed Keplerian motion in the gravitational
field of this body. After the spacecraft enters the sphere of gravitational action of the smaller ce-
lestial body, we consider its motion in the noninertial reference frame associated with the smaller
body and assume that this motion is governed solely by the gravitational field of the smaller body.

On the boundary of the sphere of gravitational action we join the two Keplerian orbits. That
is, we transform the coordinates and velocity of the spacecraft from one frame of reference to the
other and regard these new values as the initial conditions for the continued Keplerian motion in
the new frame of reference. Thus the three-body problem is reduced to two two-body problems,
for which exact analytic solutions are possible.

Clearly there are no boundaries in space that are impenetrable to gravitational fields. The
division of space into separate regions in which the motion of a spacecraft is governed solely by
one celestial body is no more than a convenient convention. Therefore this method for obtaining
a solution to the restricted three-body problem is an approximation. The verification of these
approximate solutions by the direct numerical integration of the equations of motion shows that
the method of joined conic sections gives not only good qualitative results but also rather reliable
quantitative estimates.



Chapter 7

Theoretical Background

7.1 Angular Momentum and Areal Velocity

The angular momentum of a point particle of mass m with respect to the origin is defined as
the vector product of the radius vector r to the particle and the vector of the linear momentum
p = mv, where v is the velocity of the particle:

L = r× p = r×mv. (7.1)

We can find the rate of change of the angular momentum in time dL/dt by taking the time
derivative of the right part of Eq. (7.1) considering it as a product of two factors r and mv:

dL
dt

=
dr
dt
×mv + r×m

dv
dt

. (7.2)

The first term in the right side of Eq. (7.2) is zero because the derivative dr/dt is the velocity
v of the particle, and the vector product of a vector with itself is zero: v × v = 0. In the second
term, the acceleration a = dv/dt can be expressed in terms of the net force F on the particle and
its mass. From Newton’s second law:

m
dv
dt

= F. (7.3)

Thus we obtain that the time rate of change of the angular momentum equals the torque of the
net force F on the particle relative to the origin:

dL
dt

= r× F. (7.4)

By definition, when a particle moves in a central field, the force F of the field is directed along
the radius vector r, and torque of the force relative to the center of the force is thus zero: r×F = 0.
Consequently, as we can see from Eq. (7.4), the angular momentum of a particle relative the center
of force is conserved during the motion: L = const. As we show next, this conservation of the
angular momentum implies the constancy of the areal velocity. In other words, Kepler’s second
law is a consequence of the conservation of angular momentum.

Let us consider the geometric meaning of the angular momentum of a particle orbiting a cen-
tral body (Figure 7.1). We can represent velocity v in the definition of the angular momentum,
Eq. (7.1), as the ratio of the vector dr of infinitesimal displacement to the corresponding infinites-
imal time interval dt:

137
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Figure 7.1: Geometric meaning of the angular momentum.

L = r×mv = mr× dr/dt. (7.5)

The vector product r×dr in the right side of Eq. (7.5) is a vector perpendicular to the plane in
which the vectors r and dr lie (that is, the vectors r and v). The magnitude of this vector product,

|r× dr| = rdr sin α = 2dS, (7.6)

is twice the area dS of the elementary triangle swept out by r during dt. (This area is shaded in
Figure 7.1.) Indeed, the product of dr with the sine of the angle α between the vectors r and dr
is the height of this triangle (measured from its side r). The ratio dS/dt of the elementary area
dS to the time interval dt during which the radius vector dr “sweeps out” this area, is called the
areal velocity or sectorial velocity . Therefore, it follows from Eq. (7.6) that the magnitude of the
angular momentum is proportional to the areal velocity:

L = 2m
dS

dt
. (7.7)

The conservation of the direction of the angular momentum vector during the motion means
that the trajectory of a particle in a central field is a plane curve, that is, it lies in a fixed plane
orthogonal to the constant vector L. The orientation of this plane is determined by the initial
values of the radius vector r0 and velocity v0. The conservation of the magnitude of the angular
momentum means that the areal velocity is constant.

Thus, Kepler’s second law is a consequence of the conservation of angular momentum for a
particle in a central field. The areal velocity is constant for all Keplerian motions, including motions
along parabolic and hyperbolic trajectories, as well as motions along elliptical (and circular) orbits.
We emphasize that Kepler’s second law holds for any central field, not only for the inverse square
gravitational field. On the other hand, Kepler’s first and third laws are valid only for the motions
in a Newtonian (or Coulomb) central field, whose force is inversely proportional to the square of
the distance from the center of force.

7.2 Dynamical Derivation of Kepler’s First Law

Next we prove analytically that trajectories in a Newtonian (inverse square) gravitational field
are conic sections. It is convenient to use the laws of the conservation of angular momentum and
energy for the derivation of the shape of trajectory rather than Newton’s second law directly.

We use the polar coordinates r and ϕ to indicate the position of the particle in the plane of
motion. Let the origin of the coordinate system be at the center of force. The equation of a
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trajectory in polar coordinates is r = r(ϕ), an equation that expresses the distance r from the
center as a function of the angle ϕ between the radius vector and some fixed direction (the polar
axis) in the plane.

First we express the magnitude of the angular momentum L of a particle in terms of its polar
coordinates:

L = m|r× v| = mrv⊥ = mr2ϕ̇. (7.8)

Here v⊥ = rϕ̇ is the transverse component of the particle’s velocity (the component orthogonal to
the radius vector). Since the angular momentum L of the particle remains constant during motion
in a central field, for any point of the trajectory the angular velocity ϕ̇ can be expressed (by using
Eq. (7.8)) in terms of the distance r from the origin (from the center of force) and the constant
value of angular momentum L:

ϕ̇ =
L

mr2
. (7.9)

Next we use the conservation of energy. In the expression mv2/2 for the kinetic energy, the
square of the particle’s velocity is the sum of the squares of its radial (ṙ) and transverse (rϕ̇)
components: v2 = ṙ2 + r2ϕ̇2. Substituting ϕ̇ from Eq. (7.9) into the second term, we write for the
total energy Ekin + U in polar coordinates:

1
2
mṙ2 +

L2

2mr2
−G

mM

r
= E. (7.10)

The constant values E of the total energy and L of the angular momentum in Eq. (7.10) are
determined by the initial conditions. To find the shape of the trajectory r = r(ϕ), we eliminate
time from Eq. (7.10). Considering r as a function of ϕ rather than of t explicitly, we write:

ṙ =
dr

dt
=

dr

dϕ

dϕ

dt
=

dr

dϕ

L

mr2
. (7.11)

Here we have expressed the angular velocity dϕ/dt = ϕ̇ in terms of the angular momentum L
with the help of Eq. (7.9). Substituting this expression for ṙ into equation (7.10), we obtain a
differential equation for the function r(ϕ) that describes the trajectory.

This differential equation can be simplified if we introduce a new function ρ = ρ(ϕ) instead of
r(ϕ) by the relation ρ = 1/r. Since

dr

dϕ
=

d

dϕ

1
ρ

= − 1
ρ2

dρ

dϕ
= −r2 dρ

dϕ
,

we find from Eq. (7.11) that

ṙ = − L

m

dρ

dϕ
, ṙ2 =

L2

m2

(
dρ

dϕ

)2

. (7.12)

Substituting this expression for ṙ2 into Eq. (7.10), we obtain the following differential equation
for ρ(ϕ):

(
dρ

dϕ

)2

+ ρ2 − 2Gm2M

L2
ρ = const. (7.13)

The variables ρ and ϕ in this first order differential equation can be separated, and its solution
can be found by standard methods. However, a further simplification is achieved if we differentiate
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this equation with respect to ϕ, thus replacing it with the following second order differential
equation:

d2ρ

dϕ2
+ ρ = C, (7.14)

where we introduced the notation C = Gm2M/L2.
Such a differential equation with constant coefficients is often encountered in various problems.

For instance, a similar equation describes the motion of a harmonic oscillator. The general solution
to the equation is well known:

ρ(ϕ) = C + A cos(ϕ− ϕ0), (7.15)

where the arbitrary constants A and ϕ0 are determined by the initial conditions. Returning to the
original function r = 1/ρ, we obtain:

r(ϕ) =
p

1 + e cos(ϕ− ϕ0)
, (7.16)

where

p =
1
C

=
L2

Gm2M
, e =

A

C
. (7.17)

Equation (7.16) describes the required trajectory of a body in the Newtonian (inverse square)
gravitational field (see Chapter 6, Eq. (6.12)). It is well known from analytical geometry that
this equation is the equation of a conic section, that is, of the curve formed by the intersection
of a circular cone and a plane (ellipse, parabola, or hyperbola). In Eq. (7.16) ϕ− ϕ0 is the angle
between the radius vector and the axis of symmetry of the trajectory. (This axis is directed from
the center of force toward the nearest point of the trajectory.) If we choose the polar axis along
this axis of symmetry, the constant ϕ0 in Eq. (7.16) is zero.

The quantity p = L2/(Gm2M) in Eq. (7.16) has the dimension of length. It is called the
semilatus rectum of the conic (or the orbital parameter or focal parameter if the conic is an orbit).
The dimensionless quantity e in Eq. (7.16) is called the eccentricity of the conic section. For e = 0
Equation (7.16) gives r = p, that is, the distance r does not depend on ϕ. Thus, for e = 0 the orbit
is a circle whose radius equals p. Otherwise, the focal parameter p equals the distance between the
center and the orbit at ϕ− ϕ0 = ±π/2, when cos(ϕ− ϕ0) = 0. (This is the geometric meaning of
the focal parameter.) For e < 1 Equation (7.16) corresponds to an ellipse (Figure 6.1), for e = 1
to a parabola, and for e > 1 to a hyperbola.

Parameters of the orbit p and e can be expressed in terms of the dynamical constants of the
motion, namely the total energy E and angular momentum L, and the physical parameters M
and m. According to Eq. (7.17), the focal parameter p depends only on the angular momentum L:
p = L2/(GMm2). Next we obtain the values of major axis a (for closed orbits) and eccentricity e.

Let rP be the distance between the center of force and the closest point of the trajectory
(perihelion, perigee, or, generally, pericenter), and vP be the velocity at this point. (The velocity
vector v is orthogonal to the radius vector r at this point.) Then the total energy E can be written
as follows:

E =
1
2
mv2

P −
GMm

rP
=

L2

2mr2
P

− GMm

rP
. (7.18)

We have expressed the velocity at the perigee in terms of the angular momentum L = mrP vP .
From Eq. (7.16) we see that the perigee distance rP for an orbit with given parameters p and e
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equals p/(1 + e). Substituting rP = p/(1 + e) and L2 = pGMm2 from Eq. (7.17) into Eq. (7.18),
we obtain

E = −(1− e2)
GMm

2p
= −GMm

2a
. (7.19)

In the latter formula we have used the relation a = p/(1− e2) between the semimajor axis a and
parameters p and e of the ellipse (see Eq. (6.14)). For finite closed orbits e < 1 and a is positive.
We see that closed orbits correspond to negative values of the total energy: E < 0. It follows
from Eq. (7.19) that the semimajor axis a for such a closed elliptical orbit depends only on total
energy E: a = −GMm/(2E). The semimajor axis a and, consequently, the period of revolution T
(see the next section) are uniquely determined by the total energy E and are independent of the
angular momentum. The period of revolution is the same for any orbit with a given energy (or
given semimajor axis), independently of its eccentricity e. For the special case of circular orbits
we have r = a, and Eq. (7.19) coincides with the expression E = −GMm/(2r) for the total energy
of a satellite in a circular orbit, Eq. (6.9).

A value of zero for the total energy, E = 0, Eq. (7.19) gives e = 1. The conic section, Eq. (7.16),
with e = 1 is a parabola. Positive values of the total energy, E > 0, correspond to eccentricities
e > 1, that is, to hyperbolic trajectories described by Eq. (7.16) with e > 1.

If we apply the relation a = p/(1−e2) to a hyperbola (e > 1), it gives a negative value for a. In
this case the magnitude of a has the geometric meaning of the distance between the two branches
of the hyperbola (measured along the principal axis that passes through the foci). With such in
mind, we can also use Eq. (7.19) with a < 0 for open hyperbolic orbits corresponding to positive
values of the total energy E.

In the general case, we can find from Eq. (7.19) the expressions for the semimajor axis a and
eccentricity e of the orbit in terms of constant values of total energy E and angular momentum L.
Substituting p = L2/(GMm2) into Eq. (7.19), we obtain:

a = −GMm

2E
, e =

√
1 +

2EL2

G2M2m3
. (7.20)

7.3 Kepler’s Third Law

In order to prove Kepler’s third law for elliptical orbits, we can calculate the period of revolution T
by dividing the area S = πab of the ellipse by the sectorial velocity dS/dt. According to Eq. (7.7),
the sectorial velocity is proportional to the magnitude of the angular momentum: L = 2mdS/dt.
Since the semiminor axis b of the ellipse equals b

√
1− e2 (see Eq. (6.15)), and a = p/(1− e2), we

obtain for the period of revolution:

T =
2mπp2

L(1− e2)3/2
.

Substituting L = m
√

GMp here, we see that focal parameter p and eccentricity e enter into the
expression for T in a form p/(1 − e2) that is equal to the semimajor axis a. Consequently, the
period of revolution along an elliptical orbit depends only on its semimajor axis a:

T =
2πa3/2

√
GM

. (7.21)

The equation states that the square of the period of revolution is proportional to the cube of the
semimajor axis of the orbit. This is the familiar form of Kepler’s third law. For the special case
of circular orbits Eq. (7.21) for the period of revolution (with a = r) was obtained earlier (see
Eq. (6.8)).



CHAPTER 7. THEORETICAL BACKGROUND 142

As an example of how Kepler’s third law can be used in practice, let us consider the following
problem.

Problem. A projectile is launched vertically from the earth’s surface with an initial velocity
that equals the circular velocity vc =

√
gR for a very low orbit. How long does the flight of the

missile last from start to finish (when it strikes the ground)?
Solution. It follows from the law of energy conservation that the height of the highest point

reached by the missile over the surface for v0 = vc equals the earth’s radius R. The trajectory
of the missile is a half of the rectilinear segment joining the center of the earth and the upper
point of the flight. This segment can be regarded as the limiting case of a very narrow elliptical
orbit with foci at the ends of the segment. To make the motion along this orbit theoretically
possible, we can imagine all the earth’s mass to be concentrated in its center. The major axis of
the degenerate ellipse is 2R. The period of revolution T0 along this degenerate elliptical orbit would
be the same as along the circular orbit whose diameter equals the major axis of this degenerate
ellipse: T0 = 2πR/vc = 2π

√
R/g. We are interested in the time interval during which one half of

the degenerate orbit is completed, namely, the half that is farther from the center of force.

Figure 7.2: The area swept out by the radius vector

To find this time, we can make use of Kepler’s second law. We consider an elliptical orbit whose
semimajor and semiminor axes are a and b respectively (Figure 7.2). When the end of the radius
vector moves along this ellipse, the radius vector sweeps out equal areas in equal times. We want
to find the time interval T1 during which the end of the radius vector passes along the remote half
of the ellipse from one end of the minor axis to the other, sweeping out the corresponding area S1

(the unshaded portion of the figure) which consists of half the ellipse and a triangle whose base is
the minor axis and whose vertex is at the focus. The height c of this triangle equals ea, where e
is the eccentricity of the ellipse.

Consequently, the ratio of the time interval T1 to the period T0 equals the ratio of corresponding
areas:

T1

T0
=

S1

S0
=

πab/2 + eab

πab
=

1
2

+
e

π
.

For the circular orbit e = 0, and we get, as expected, T1 = T0/2. That is, any half of the circular
orbit is covered during one half of the period since the circular orbital motion is uniform. However,
for elliptical orbits these halves of the ellipse are not equivalent: The farther half requires more time.
For the limiting case of the degenerate ellipse (with e = 1), we obtain T1 = (1+2/π)T0/2 = 0.82 T0.
During the first half of this time the missile moves upward, and during the second it falls. Since
we are ignoring air resistance, the times of rising and falling are clearly equal.



CHAPTER 7. THEORETICAL BACKGROUND 143

7.4 Hodograph of the Velocity Vector for Keplerian Motion

In Chapter 1 we described the simulation program that illustrates an interesting property of any
Keplerian motion. This property is concerned with the curve traced out by the velocity vector in
velocity space (a hodograph). We have seen that for circular, elliptic, and parabolic motion the
hodograph of the velocity is a circle (see Figures 1.7 and 1.8), and for hyperbolic motion, it is a
circular arc (Figure 1.9). Here the circular shape of the velocity hodograph is proved rigorously
on the basis of Newton’s laws of motion.

This property of the velocity vector holds for motion of a particle in Newtonian central gravi-
tational field (and Coulomb central electrostatic field), whose strength decreases as the square of
the distance. To prove the property analytically, we apply Newton’s second law to the motion of
a particle under the central force F (r) = GmM/r2. The vector a of the acceleration produced by
this force is always directed towards the center of force, and its magnitude is inversely proportional
to the square of the distance r:

a =
∆v
∆t

= −GM
1
r2

r
r
. (7.22)

We can eliminate the variable 1/r2 from this equation by using the law of angular momentum
conservation (see Section 7.1 “Angular Momentum and Areal Velocity”):

L = m|r× v| = mrv⊥ = mr2ϕ̇. (7.23)

Here v⊥ = rϕ̇ is the transverse component of the velocity of the particle (the component orthogonal
to the radius vector). Since the angular momentum of the particle remains constant during the
motion in a central force field, for any point of the trajectory the square of the distance r from the
origin can be expressed with the help of Eq. (7.23) through the angular velocity ϕ̇ = ∆ϕ/∆t and
a constant value of L:

1
r2

=
m

L
ϕ̇ =

m

L

∆ϕ

∆t
. (7.24)

Substituting 1/r2 given by Eq. (7.24) into Eq. (7.22), we find that during Keplerian motion
the magnitude of the infinitesimal vector ∆v (of the increment in the velocity vector during the
time interval ∆t) is proportional to the angle ∆ϕ, through which the radius vector of the particle
rotates during ∆t:

|∆v| = GMm

L
∆ϕ. (7.25)

We note that this proportionality between |∆v| and ∆ϕ holds only for the motion in a central
field whose strength is proportional to 1/r2. Hence the circular form of the velocity hodograph
(the property that we are going to prove) is an inherent property of inverse square central fields.

A geometric interpretation of Eq. (7.25) is shown in Figure 7.3. Each time radius vector
r of the orbiting particle turns through an infinitesimal angle ∆ϕ, the vector of velocity v is
incremented by ∆v, whose magnitude |∆v| is proportional to ∆ϕ. Thus the elementary vectors
∆v in velocity space lie along a circle whose radius, according to Eq. (7.25), equals GMm/L. In
other words, Eq. (7.25) proves that the hodograph of the velocity vector is a circle. The constant
value u = GMm/L of the coefficient of proportionality between |∆v| and ∆ϕ is the radius of this
circular hodograph of the velocity vector.

It is convenient to express radius u of the velocity hodograph in terms of velocity vP at perigee
(the point P nearest to the center of force) and the circular velocity vc for the perigee distance rP .
Since vc =

√
GMm/rP and L = mrP vP , we get the expression:
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Figure 7.3: Keplerian orbit of a satellite and the velocity vector in space (left), and hodograph of
the velocity vector in velocity space (right).

u =
v2
c

vP
. (7.26)

If the satellite is launched into a circular orbit (vP = vc), Equation (7.26) yields u = vc. In
this trivial case the radius of the hodograph clearly equals the circular velocity. For an elliptical
orbit, it is possible to express the radius u = GMm/L of the hodograph in terms of velocities vP

and vA at the perigee and apogee respectively. We can use the laws of the conservation of energy
and angular momentum for this purpose. Equating the values of the total energy at these points
rP and rA, we write:

m

2
v2

P −
GMm

rP
=

m

2
v2

A −
GMm

rA
. (7.27)

We next solve this equation for GMm, and substitute into u = GMm/L the expression obtained,
together with the (constant) angular momentum L, calculated, say, for the perigee: L = mrP vP .
The ratio of distances rP /rA can be eliminated with the help of the relation rP vP = rAvA. (The
values of the angular momentum, or of the sectorial velocity, are equal at the perigee and apogee).
Finally, we obtain the following expression for the radius u of the velocity hodograph:

u =
1
2
(vP + vA). (7.28)

By virtue of this property we can represent the vector of velocity v for any point of an elliptical
orbit as the vector sum of the following two vectors w and u. (See Figure 7.3 for the case of
an elliptical orbit.) One term of the sum is the constant vector w = (vP + vA)/2 of magnitude
(vP − vA)/2, directed along the vector vP of the velocity at perigee. This vector w extends from
the origin of velocity space to the center of the circular hodograph. The second term is a vector
u of constant magnitude u = (vP + vA)/2, whose direction is always perpendicular to the radius
vector r of the orbiting body.
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This representation of the velocity vector is useful for solving certain problems concerning
Keplerian motion.

The derivation of Eq. (7.25) that gives the proof of the circular form of the velocity hodograph,
as well as the geometric interpretation of Eq. (7.25) discussed above, are based on the inverse-
square dependence of the central force on distance. The assumption about the closed trajectory is
used only in the calculation of the hodograph radius u in terms of vP and vA. Consequently, the
circular form of the velocity hodograph is characteristic not only of closed (circular and elliptical)
orbits, but also of open (parabolic and hyperbolic) trajectories of motion in a central field whose
force is inversely proportional to the square of the distance from the center.

Motion along the parabolic trajectory corresponds to the limit vA → 0 in the above formulas.
In this case w = vP /2, and both terms of the sum u + w have equal magnitudes: u = w = vP /2.
These vectors w and u form two radii of the circular hodograph, and at any instant the vector of
velocity v forms a chord of the circle.

Figure 7.4: Hyperbolic trajectory of a body in a central gravitational field and the velocity vector
in space (left), and hodograph of the velocity vector in velocity space (right).

For hyperbolic Keplerian motion, the diameter 2u of the circular hodograph is smaller than the
velocity vP at the vertex of the hyperbola (Figure 7.4). In this case the origin of velocity space is
located outside of the circular hodograph.

When a body moves from infinity towards the center of force and then again to infinity along
a hyperbolic trajectory, the vector of velocity rotates through the angle between the asymptotes
of the hyperbola. In velocity space, the end of the velocity vector traces the part of the circle
bounded by the points of tangency with this circle of the straight lines drawn from the origin of
the velocity space. (See Figure 7.4.) The end of vector u of constant magnitude v2

c/vP moves
along the same arc. This vector rotates (nonuniformly) between the points of tangency about a
fixed point (the center of the hodograph) whose position with respect to the origin of the velocity
space is indicated by the constant vector w.

7.5 Family of Orbits with Equal Energies and a Common
Initial Point

Earlier in Chapter 2 we discussed the properties of the set of orbits traced by the fragments of
an exploding rocket. We assumed that these fragments initially move from a single point in all
directions with initial velocities of equal magnitude. They thus are satellites of the earth, orbiting
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along different elliptical Keplerian orbits characterized by equal values of total energy. These
orbits are limited in space to a region whose boundary is a closed surface of revolution. The axis
of rotation of the curve generating this surface passes through the earth’s center and the initial
point. (See Figure 2.5) What equation defines this curve?

We show below that the surface is an ellipsoid, generated by the rotation of an ellipse about
the axis mentioned above. One of the foci of the ellipse is located at the center of the earth and the
other at the initial point. The dimensions and eccentricity of the ellipsoid depend on the position
of the initial point and on the initial velocity of the fragments.

The fragment whose initial velocity, at the point S in Figure 7.5, is directed upward along the
local vertical line (to the left in Figure 7.5), rises vertically along a straight line to the highest
point N located at the distance rmax from the earth’s center. Then it falls toward the earth along
the same line. The trajectory of this fragment is part of the rectilinear segment joining the highest
point N with the center of the earth F1. We can consider this segment as the limiting case of an
infinitely narrow ellipse. The foci of this degenerate ellipse lie at the ends of the segment. That is,
one focus is at the earth’s center F1 and the other at the highest point N of the trajectory.

Clearly the highest point N is on the bounding surface. The distance rmax of this point from
the earth’s center can be calculated by equating the total energy of the fragment at this point N
to the total energy at the initial point S, located at the distance r0 from the center of force:

v2
0

2
− GM

r0
= −GM

rmax
. (7.29)

It is convenient here to express the gravitational parameter of the planet GM in terms of the
escape velocity vesc for the initial point S (v2

esc = 2GM/r0):

1
rmax

=
1
r0

(
1− v2

0

v2
esc

)
; rmax =

1
1− (v0/vesc)2

. (7.30)

Figure 7.5: For the geometric determination of the boundary surface.

If the initial velocity equals the circular velocity for the initial point, that is, if v0 = vc =√
GM/r0, Equation (7.30) gives rmax = 2r0: The distance of the highest point N from the earth’s

center is twice the distance r0 of the initial point.
We can easily find a second point on the boundary, namely, the point opposite N . It coincides

with the apogee A (or with the perigee if v0 < vc) of the elliptical orbit of that fragment whose
initial velocity at S is directed horizontally (transverse to the radius vector). The distance rA of
this point from the earth’s center is given by Eq. (6.17).
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Next we prove that the curve whose rotation generates the boundary is an ellipse. The ends of
the major axis of this ellipse are located at N and A, and its foci are located at the initial point S
and the earth’s center F1. The shape of the boundary is determined from the following geometric
properties of the trajectories.

First we find the locus of the foci of all the orbits of the fragments. All orbits have a focus at
the center of the earth, and so the locus of this set is the point F1. The locus of the set of second
foci F2 is a circle whose center is located at the initial point S, and whose radius is equal to the
distance SN , measured from S to the most remote point N . (See Figure 7.5.) Indeed, for any
orbit of the family, the sum of two distances of each point on the orbit from the foci of the orbit
equals the major axis of the orbit. The major axes of all the orbits of the family, as we seen, are
equal to each other. Their lengths are equal to the length rmax of the segment F1N . This segment
can be considered the major axis of the degenerate elliptical orbit of the fragment whose initial
velocity is directed upwards. All orbits of the family pass through S, and the distance from this
common point to the focus F1 for all the orbits equals r0. Consequently, the distance between S
and the second focus also must be equal for all the orbits. Hence the second foci of all orbits of
the family lie on the circle with the center at the initial point S and radius SN .

Next we consider the following auxiliary construction (Figure 7.6): We draw a second circle
with the center at the earth’s center F1 and radius rmax. This circle passes through N , which lies
on the bounding surface.

Figure 7.6: Determining the bounding surface.

Now let us consider the problem of finding the orbit passing through an arbitrary point M that
lies within the second circle just drawn. Choosing M as a center, we draw a third circle tangent
to the second circle at point B, as shown in Figure 7.6. The second focus of the orbit through M
must lie on this circle because the sum of two distances from the foci again must be equal to rmax.
And at the same time the second focus must lie on the first circle (with the center at the initial
point S and radius SN). We examine three possibilities:

1. The third circle (with the center at M) intersects the first circle (the locus of second foci of
the orbits) at two points. Then there exist two orbits of the family that pass through the given
point M . The second foci of these two orbits lie at the two points of intersection.

2. The third circle has no common points with the first circle. Then no orbit of the family
passes through M . If follows that M lies outside the bounding surface.

3. Lastly, the third circle grazes the first circle, thus having a single common point L with it
(see Figure 7.6). Then only one orbit of the family passes through M . In this case point M must
lie on the bounding surface. We can see from Figure 7.6 that in this case of grazing the sum of
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distances from M to F1 and S equals the radius rmax of the second circle plus the radius SN of
the first circle. This sum is independent of the position of point M on the boundary. That is, the
sum has equal values for all points of the boundary. Since points F1 and S are fixed, and since
the sum of their distances from M is the same for all M , we have proved that the locus of the
boundary points for the region occupied by the orbits of the family is an ellipse whose foci are at
F1 and S.

If the initial velocity v0 equals the circular velocity vc for the initial point, the distance between
the foci of this bounding ellipse is one third its major axis. That is, the eccentricity of the ellipse
is 1/3 if v0 = vc.

7.6 Gravitational Field of a Distorted Planet

If the distribution of mass in a celestial body is spherically symmetric, the gravitational field outside
the body is equivalent to the gravitational field of a point mass, that is, its strength decreases as the
square of the distance from the center of the body. The distribution of mass in stars and planets is
almost spherical, and in most problems of celestial mechanics we can consider their gravitational
fields as obeying the inverse square law with great precision.

However, the actual form of a planet can slightly differ from the sphere. For example, the
polar radius of the earth is by 21 km smaller than the equatorial one; that is, the earth is slightly
squeezed along its axis of rotation. One of the programs of the package (“Precession of the Orbit
of an Equatorial Satellite”) simulates the motion of a satellite in the equatorial plane of such a
planet (see Chapter 4). Here we shall show that because of a small axial distortion of a planet its
gravitational field differs from the inverse square field of a point mass by a (small) additional term
that falls off as the fourth power of the distance from the planet.

Figure 7.7: Models of the mass distribution for a prolate planet: point masses ∆m/2 at the poles
(a), and for an oblate planet: an equatorial belt of mass ∆m around the planet (b).

We consider first the case of a prolate planet, whose polar radius is slightly greater than the
equatorial one. For large enough distances from the planet, we can assume that its gravitational
field is created by an ideal sphere of mass M−∆m and two point masses ∆m/2 located at the poles
of the planet (Figure 7.7,a). In other words, we assume that some small part ∆m of the whole
mass M is transferred from the center through a distance R to the poles of the planet. Because
of axial symmetry, the gravitational field in the equatorial plane depends only on the distance r
from the center. The potential energy U(r) of a unit mass at some point P in the equatorial plane
of this field is the sum of the main term −G(M −∆m)/r corresponding to point mass M −∆m
at the center of the planet, and the term corresponding to two point masses ∆m/2 located at the
poles of the planet:
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U(r) = −G

r
(M −∆m)− G∆m√

r2 + R2
=

−GM

r

(
1− ∆m

M
+

∆m

M

1√
1 + (R/r)2

)
. (7.31)

Since this expression for U(r) corresponds to a simplified model of the mass distribution (the
point mass M − ∆m at the center and two point masses ∆m at the poles), it is valid only for
distances r from the prolate spheroidal planet that are large compared to the planet’s radius R:
r À R. But if the radius R of the planet is much smaller than the distance r between the planet
and the point P (R/r ¿ 1), the exact expression for U(r), Eq. (7.31), can be simplified and reduced
to the following form:

U(r) ≈ −GM

r

[
1− 1

2
∆m

M

(
R

r

)2
]

. (7.32)

The gravitational force F (r) exerted on the unit mass in the equatorial plane can be found as
the negative derivative of the potential energy U(r) with respect to r:

F (r) = −dU(r)
dr

= −GM

r2

[
1− 3

2
∆m

M

(
R

r

)2
]

. (7.33)

We see that the additional term in the gravitational force F (r) is proportional to the distortion
of the planet (characterized by ∆m/M in our model of the distortion), and inversely proportional
to the fourth power of the distance r from the planet. The sign of this term is opposite to that of
the main inverse square term; that is, the axial dilation of the planet reduces the force of gravitation
in the equatorial plane. Comparing Eq. (7.33) with Eq. (4.1) of Chapter 4, we obtain the following
expression for the dimensionless factor b that is introduced phenomenologically in Eq. (4.1) to
characterize the additional term of the gravitational force created by an axially dilated planet:

b = −3
2

∆m

M
. (7.34)

Similarly we can consider the case of an oblated planet. The gravitational field at large distances
from the planet (at r À R) in this case is the same as that created by an ideally spherical body
of mass M −∆m with an additional massive belt of mass ∆m surrounding the planet along the
equator (Figure 7.7,b). In other words, in our model we assume that some part ∆m of the total
mass M is transferred from the center to the equator of the planet.

To calculate the gravitational field created by this system, we divide the belt into elementary
parts subtended by a central angle of dθ. The mass of each elementary part is dm = (∆m/2π)dθ.
If the angular position of an elementary part of the belt is characterized by an angle θ (see Figure
7.7,b), its distance from point P equals

√
r2 + R2 − 2rR cos θ, and its contribution dU(r) in the

potential energy of a unit mass at point P is

dU(r) = − Gdm√
r2 + R2 − 2rR cos θ

= −G∆m

2π

dθ√
r2 + R2 − 2rR cos θ

. (7.35)

To find the potential energy ∆U(r) of the unit mass in the field created by the entire belt, we
use the principle of superposition and integrate dU(r), Eq. (7.35), over θ along the belt from 0 to
2π:
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∆U(r) = −G∆m

r

1
2π

∫ 2π

0

dθ√
1 + (R/r)2 − 2(R/r) cos θ

. (7.36)

Our model of the mass distribution for an oblated planet is appropriate only for large distances
r À R, and so we can simplify the integrand for the case R/r ¿ 1:

∆U(r) ≈ −G∆m

r

1
2π

∫ 2π

0

[
1− 1

2

(
R

r

)2

+
R

r
cos θ +

3
2

(
R

r

)2

cos2 θ

]
dθ =

−G∆m

r

[
1 +

1
2

(
R

r

)2 1
2π

∫ 2π

0

(3 cos2 θ − 1)dθ

]
=

−G∆m

r

[
1 +

1
4

(
R

r

)2
]

. (7.37)

Adding the potential energy ∆U(r) created by the belt to the potential energy −G(M−∆m)/r
of the unit mass in the gravitational field created by the point mass M −∆m located at the center
of the planet, we obtain the following expression for the potential energy at a distance r in the
gravitational field of the oblated planet:

U(r) = −GM

r

[
1 +

1
4

∆m

M

(
R

r

)2
]

= −gR2

r

[
1 +

1
4

∆m

M

(
R

r

)2
]

. (7.38)

We replaced here the product GM with gR2, where g is the acceleration of free fall at the
surface of the planet. Differentiating the potential energy U(r) with respect to r, we find the
gravitational force exerted on the unit mass in the equatorial plane of the oblated planet:

F (r) = −dU(r)
dr

= −gR2

r2

[
1 +

3
4

∆m

M

(
R

r

)2
]

= −gR2

r2

[
1 + b

(
R

r

)2
]

. (7.39)

Here we have defined a dimensionless parameter b = (3/4)(∆m/M) to characterize the axial
distortion of the planet. This parameter was earlier introduced phenomenologically (see Eq. (4.1)
of Chapter 4).

Thus our model of an oblate planet as a sphere with an equatorial belt produces in F (r) an
additional term that is proportional to the distortion of the planet. This term decreases as the
fourth power of the distance r from the planet, and its sign is the same as that of the main (inverse
square) term; that is, the axial contraction of the planet increases the gravitational force in the
equatorial plane.

7.7 Relative Orbital Motion

To investigate the relative motion of orbiting bodies we can derive simple differential equations
that are approximately valid for small spatial distances between the bodies. More precisely, these
equations describe the relative motion of the orbiting bodies while the distances between them are
much smaller than the linear dimensions (axes) of the orbit.

As an example, we consider the motion of a body ejected by an astronaut from an orbital
station that orbits the earth in a circle. (Several simulation experiments of this kind are described
in Chapter 3.) We make use of the non-inertial frame of reference whose origin lies in the station
(Figure 7.8). The z-axis of this frame points perpendicularly to the plane of the orbit, that is,
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parallel to the vector of the angular velocity Ω of revolution of the station; the x-axis lies in the
plane of the orbit and extends radially outward, away from the center of the earth; and the y-axis
is parallel to the orbital velocity, vc. Vector r0 is directed from the center of the earth toward
the orbital station. The position of the body relative to the orbital station is determined by the
radius vector r, and relative to the center of the earth by a vector r′, that is the sum of r0 and r:
r′ = r0 + r.

Figure 7.8: The frame of reference associated with the orbital station.

The acceleration a of the body relative to this rotating frame of reference is determined by
the gravitational pull of the earth −GmM r′/r′3 (here M is the mass of the earth and m is the
mass of the body), and also by the centrifugal pseudo force of inertia −mΩ× (Ω× r′), and by the
Coriolis pseudo force of inertia 2mv ×Ω, where v is the vector of velocity of the body relative to
the station. Thus,

a = −GM

r′3
r′ −Ω× (Ω× r′) + 2v ×Ω. (7.40)

Now we represent vector r′ in Eq. (7.40) as the sum r0 + r (see Figure 7.8). To simplify the
expression 1/r′3 in the case of small spatial distances r ¿ r0, we calculate first the square of the
vector r′, and then raise the expression obtained to the power −3/2. Calculating the square of the
vector r0 + r, we reject the small term r2. Leaving only the terms linear in small quantity r/r0,
for the first term in the right side of Eq. (7.40) we obtain:

GM

r′3
≈ GM

r3
0

(
1 + 2

r0 · r
r2
0

)−3/2

≈ Ω2

(
1− 3

r0 · r
r2
0

)
. (7.41)

We have taken into account here that the square of the angular velocity Ω of the station in
its orbital motion equals GM/r3

0. Substituting Eq. (7.41) into Eq. (7.40), we obtain the following
expression for the relative acceleration of the body, valid up to the terms linear in r/r0:

a = −Ω2(r0 + r) + 3 Ω2 r0 · r
r2
0

r0 −Ω× (Ω× r0)−Ω× (Ω× r) + 2v ×Ω. (7.42)

In Eq. (7.42), the main term of the acceleration caused by the gravitational pull of the earth
(−Ω2r0) is balanced by the main term of the acceleration caused by the centrifugal pseudo force
of inertia, namely by the term −Ω × (Ω × r0). This relationship is clearly seen from Figure 7.8.
The balancing of the gravitational force by the pseudo force of inertia is the sense of weightlessness
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experienced by astronauts on the orbital station. The balancing is complete for a body located at
the origin of the non-inertial frame of reference associated with the station.

For a body at some distance r from the origin, only the main term of the gravitational accel-
eration (of order zero in r/r0) is balanced by the pseudo force of inertia. The remaining terms of
the gravitational acceleration (linear in r/r0) in Eq. (7.42), together with the terms of the same
order of magnitude in the acceleration caused by the centrifugal pseudo force of inertia, and with
the acceleration produced by Coriolis force (which depends on the relative velocity v), give the
desired differential equations of motion relative to the orbital station.

Projections of the vectors in Eq. (7.42) onto the axes of the reference frame associated with
the station give the following system of differential equations describing approximately the relative
motion:

ẍ = 3Ω2x + 2Ω ẏ,

ÿ = 2Ω ẋ, (7.43)
z̈ = −Ω2 z.

Here x, y, and z are the components of radius vector r that determines the position of the body
relative to the station, and ẋ, ẏ, and ż are the components of the relative velocity.

The motion of the body ejected from the station starts from the origin of the non-inertial
reference frame. Therefore, in all cases under consideration x(0) = 0, y(0) = 0, z(0) = 0. Next
we find particular solutions of Eqs. (7.43) for different directions of the initial velocity ∆v of the
body relative to the station.

1. The body is ejected from the station in a direction perpendicular to the plane of the orbit;
that is, ẋ(0) = 0, ẏ(0) = 0, and ż(0) = ∆v. For these initial conditions, the particular solution
of Eqs. (7.43) describes rectilinear oscillatory motion along the z-axis: x(t) = 0, y(t) = 0, and
z(t) = (∆v/Ω) sinΩt. That is, the body moves sinusoidally relative to the station along the z-axis,
with the station at the center of the motion and with a period T = 2π/Ω. This period is equal to
the period of revolution of the station along its circular orbit. At every quarter of this revolution
the body is at its maximum distance from the station: l = ∆v/Ω = r0(∆v/vc).

As an example we let the height of the circular orbit of the station be h = 0.1 R ≈ 640 km
(the radius of the orbit r0 ≈ 7 thousand kilometers, and the period of revolution T ≈ 98 minutes),
and the relative initial velocity of the body be ∆v = 15 m/s, which is approximately 0.2% of the
orbital velocity vc = 7.5 km/s. In this case the maximal distance l of the body from the station is
approximately 14 km.

This result can be easily understood in terms of the motion of the body in the geocentric frame
of reference. In this case the body moves along an almost circular orbit that differs from the
orbit of the station only by a slightly different orientation of its plane. The angle between these
planes equals the (small) angle α between vector vc of the circular velocity of the station and
vector vc + ∆v of the geocentric initial velocity of the body. Here α ≈ ∆v/vc ≈ 2 · 10−3. Making
revolutions along their orbits with practically equal periods, the body and the station meet after
every half-revolution at the points of intersection of their orbits. In the meantime, they recede
from one another through a maximal distance l = r0α = r0(∆v/vc).

2. The body is ejected from the station in the radial direction, e.g., downward (toward the
earth): ẋ(0) = −∆v, ẏ(0) = 0, and ż(0) = 0. For these initial conditions, the second of Eqs. (7.43)
gives ẏ = −2Ωx. Substituting ẏ into the first of Eqs. (7.43), we obtain ẍ = −Ω2x, whence
x(t) = −(∆v/Ω) sin Ωt. Now from the equation ẏ = −2Ωx at the initial condition y(0) = 0 we
find y(t) = −2(∆v/Ω)(cosΩt− 1).

Since z(t) = 0, the relative motion of the body described by these equations occurs in the
x, y-plane. To find an explicit expression for the shape of the trajectory, we eliminate the time t
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from the equations for x(t) and y(t). We obtain

x2

l2
+

(y − 2l)2

(2l)2
= 1. (7.44)

Here we again make use of the notation l = ∆v/Ω = r0(∆v/vc) for the characteristic distance.
From Eq. (7.44) we see that in the reference frame associated with the orbital station, the body
moves along an ellipse (Figure 7.9,a), whose semiminor axis equals l = r0(∆v/vc) (about 14 km
for ∆v = 15 m/s), and whose semimajor axis is twice as long and is oriented along the orbital
velocity of the station.

Figure 7.9: Trajectories of a body ejected from an orbital station (a) toward the earth and (b)
forward in the direction of the orbital motion.

Thus the body ejected downward toward the earth does in fact at first move vertically down,
relative to the station. This is what the astronauts on the station see when they watch the motion
of the body with the naked eye. However as the body continues moving, it gradually deviates from
its almost vertical initial trajectory. After a half-revolution of the station in its orbit, the body
is located in front of the station a distance of 4l (about 56 kilometers using the earlier numerical
example). After the next half-revolution, the body returns to the station from the opposite side,
that is, from above (see Figure 7.9,a).

The deviation of the body from its initial downward path becomes considerable only after the
body has moved several kilometers away from the station. Very likely the astronauts will have
lost sight of a small body by then. During the period they can keep the body in sight, it moves
towards the ground; when it reappears to the unaided eye, it does so from above!

Such a periodic motion of the body relative to the station also can be easily explained from the
point of view of a geocentric observer. Such an explanation is given in Chapter 3, together with a
description of the corresponding simulation experiment.

3. If the body is ejected from the station parallel or antiparallel to the orbital velocity vc, its
period of revolution along its elliptical orbit is no longer equal to the period of revolution of the
station. A secular term that steadily increases with time appears in the equations for its relative
motion.

For the initial conditions ẋ(0) = 0, ẏ(0) = ∆v, and ż(0) = 0 the particular solution of the
system of Eqs. (7.43) is:

x(t) = 2l (1− cosΩt),
y(t) = l (−3Ωt + 4 sinΩt), (7.45)
z(t) = 0.

Here the previous notation l = r0(∆v/vc) for the characteristic distance is used. In the radial
direction (along the local vertical line) the relative motion is again periodic. However, in the
direction tangential to the circular orbit (along y-axis), simultaneously with periodic oscillations,
a steady (monotone) variation of the coordinate occurs with an average velocity of −3Ωl = −3∆v.
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The trajectory of this motion is shown in Figure 7.9,b. (The scale along the ordinate axis
is exaggerated.) At first the body, ejected forward from the station, does in fact move forward
relative to the station, in the direction of the relative initial velocity imparted to the body. But
soon the body turns upward and begins a retrograde motion. After a time T that equals the period
of revolution of the station, the body returns to its initial height above the earth, but behind the
station by a distance 6πl (about 265 km for a quite small initial velocity ∆v = 15 m/s used in the
earlier examples). After the next interval T the distance of the body behind the station doubles,
and so on.

A diagram of the relative motion in this case (obtained in the simulation experiment for a rather
large value of the initial velocity of the body) is shown on the right side of Figure 3.5 (Chapter 3).

7.8 The Two-Body Problem

The two-body problem is concerned with the motion of two interacting bodies (point masses) with
masses m1 and m2. If the mass of one of the bodies is much greater than that of the other, the
heavier body can be treated as stationary. In other words, we can fix a reference frame to the
heavier body, and this reference frame can be considered with great accuracy to be an inertial
one. Thus the problem is reduced to the study of the motion of the lighter body in this inertial
reference frame. This body moves in a given stationary force field, which is created by the heavier
body. Such a situation can be called the one-body problem.

However, this approximation is not applicable if the masses of the two interacting bodies are
comparable. For instance, if the components of a double star have almost equal masses, neither of
the components may be treated as stationary. Since it is necessary to take into account the motion
of both interacting bodies, we are obliged to deal with the two-body problem.

We let the positions of the two bodies in a given inertial frame be determined by radius vectors
r1 and r2. We denote by F12 the central force with which the second body of mass m2 acts upon
the first body of mass m1. Then, in accordance with Newton’s third law, the first body acts upon
the second with a force F21 of equal magnitude and opposite direction:

F21 = −F12. (7.46)

It is not necessary that we specify here the physical nature of the interaction between the two
bodies, but in particular, it can be the gravitational force. Next we write the differential equations
of motion, Newton’s second law, for both bodies:

m1r̈1 = F12, m2r̈2 = −F12. (7.47)

Next we transform these equations from the variables r1 and r2 to new variables rc and r,
which are related to r1 and r2 by:

rc =
m1r1 + m2r2

m1 + m2
, r = r1 − r2. (7.48)

The new variables rc and r have a definite physical meaning: the radius vector rc is the
displacement of the center of mass of the two-body system relative to the origin of the inertial
frame, and the vector r is the displacement of the first body relative to the second. Adding the
equations of motion, we obtain r̈c = 0: the center of mass of the system of two interacting bodies
moves in a straight line at constant speed. We emphasize that the acceleration of the center of
mass is zero because the forces of interaction satisfy Newton’s third law, expressed by Eq. (7.46).1

1However, one can consider the conservation of momentum of an isolated system, as well as the uniform mo-
tion of its center of mass (which is related with this conservation), to be a more fundamental property which
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To obtain the differential equation for the variable r that describes the relative motion of the
bodies, we divide the first of these equations, Eq. (7.47), by m1, the second—by m2, and subtract
the second equation from the first. We thus obtain:

r̈ =
(

1
m1

+
1

m2

)
F12. (7.49)

We next introduce the reduced mass µ of the system by the definition:

1
µ

=
1

m1
+

1
m2

, or µ =
m1m2

m1 + m2
. (7.50)

Then Eq. (7.49) acquires the sense of an equation of motion of a single body of mass µ under
the action of the force F12, which remains the original force of interaction between the bodies. In
particular, when the interaction of the bodies is caused by universal gravitation, the problem of
determining their relative motion (of finding the function r(t) that determines the position of the
first body relative to the second) is reduced to Kepler’s problem for a single body of mass µ in a
central field of gravitation under the action of a force that is inversely proportional to the square of
distance from the center of force. Solving this problem, we find the motion of one of the interacting
bodies relative to the other. Having done so, we can easily find the motion of both bodies in the
original inertial frame.

It is convenient to consider the motion of each of the bodies in an inertial frame fixed to the
center of mass of the system of bodies. We choose the origin at the center of mass, assuming
rc = 0, that is, m2r2 = −m1r1. Then the radius vector of each of the bodies is related to the
radius vector r(t) of the relative position by:

r1 =
m1

m1 + m2
r, r2 = − m2

m1 + m2
r. (7.51)

This means that in the case in which the relative motion described by Eq. (7.49) occurs along
some Keplerian ellipse under the action of gravitational forces, both bodies move along geometri-
cally similar (homothetic) Keplerian orbits whose common focus (homothetic center) is located at
the center of mass of the system (see Chapter 5, Figure 5.1). The bodies in their motion remain
at the opposite sides of a rectilinear segment that passes through the center of mass of the system.
The linear dimensions of these homothetic orbits are inversely proportional to the masses of the
bodies.

If mass m of one of the bodies is much less than mass M of the other (which occurs, for example,
in the case of a planet orbiting the sun, or in the case of a satellite orbiting a planet), the center
of mass very nearly coincides with the position of the massive body, and the reduced mass almost
equals the mass of the lighter body. Thus, in this case we return to the problem of motion of a
body under the force of attraction towards a stationary center of force. In the case in which the
masses of the interacting bodies are equal, the reduced mass is one half the mass of one of the
bodies. Here the bodies move synchronously in equal (congruent) orbits, and the relative motion
of the bodies occurs along a geometrically similar (homothetic) orbit whose size is twice the size
of the orbits traced by the bodies in the center-of-mass frame.

7.9 Tidal Forces

In the analysis of the perturbations of an orbit of the earth’s satellite caused by its gravitational
attraction to the sun (or to the moon), we use a non-rotating, non-inertial geocentric reference

reflects the homogeneity of physical space, and regard Newton’s third law (and the requirement of its fulfillment
for all fundamental interactions, including the law of universal gravitation) as a consequence of the conservation of
momentum.
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frame. Although the origin of this frame moves in a circle around the sun (or around the earth-
moon center of mass for the problem of lunar perturbations), the frame itself does not rotate
since the directions of its axes are fixed relative to the distant stars. That is, the motion of the
frame is translational (though circular). In this reference frame the unperturbed path of an earth’s
satellite is a closed, planar elliptical or circular orbit whose dimensions and orientation in space
are constant.

The geocentric reference frame moves with an acceleration a0 relative to the inertial reference
frame. This acceleration is produced by the gravitational attraction of the earth to the sun (and to
the moon). Though the earth stays in an orbit, its acceleration is just the acceleration of free fall,
because in its orbital motion the earth is falling freely in the gravitational field of the sun (and the
moon). Therefore any body of mass m whose motion is referred to the geocentric frame (say, an
earth satellite) is subjected to the pseudo force of inertia that equals −ma0. If the body were at
the center of the earth, this pseudo force of inertia would exactly balance (cancel) the gravitational
attraction of the body by the sun (and the moon). In other words, we can consider the earth as
a space ship orbiting the sun, and a hypothetical body placed at the center of the earth is in the
condition of weightlessness with respect to the gravitation of the sun (and the moon).

The pseudo force of inertia Fin = −ma0 experienced by a body in the geocentric frame is
independent of the coordinates, but the gravitational pull of the sun Fgr depends on the position
of the body. Except at the center of the earth the balance of the forces is incomplete, and their
combined action can be described by a tidal force (or tide-generating force). On the surface of the
earth, this force gives rise to the ocean tides. The solar and lunar gravitational perturbations of
the satellite’s geocentric orbit are also produced by these differential effects of gravitation. The
tidal force is caused only by the inhomogeneity (non-uniformity) of the gravitational fields of the
sun and the moon.

Figure 7.10: The tidal forces at different points over the earth.

Figure 7.10 illustrates the origin and properties of the tide-generating forces produced by the
sun. The free-fall acceleration of the earth E in the gravitational field of the sun S is a0 = GMs/R2,
where Ms is the mass of the sun, and R is the sun-earth distance. The gravitational pull of the
sun Fgr experienced by the body (e.g., a satellite) at point A almost equals the pseudo force of
inertia Fin in magnitude, because the distances of the body and the center of the earth from the
sun are almost equal. However, the gravitational force here is not exactly opposite the inertial
force. Thus their resultant, the tidal force FA, is directed toward the earth. Its magnitude equals
ma0α = ma0r/R, where α = r/R is the angular distance between the body and the center of the
earth as seen from the sun. The tidal force FB at the opposite point B equals FA in magnitude
and is also directed vertically downward to the earth. On the surface of the earth, the tidal force
is directed vertically downward at all places (forming a circle) where the sun is in the horizon at
that moment.

The distance from the sun to the body at point Z (where the sun is at the zenith) is smaller
than to the center of the earth. Hence here the gravitational pull of the sun is greater than the
pseudo force of inertia, and so the tidal force FZ is directed vertically upward (from the earth
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toward the sun). Its magnitude

FZ = G
mMs

(R− r)2
−ma0 = ma0

[
R2

(R− r)2
− 1

]
≈ ma0

2r

R

is approximately twice the magnitude of the tidal forces at points A and B. Similarly, at the
opposite point N (for which the sun is at nadir) the pseudo force of inertia is greater than the
gravitational pull of the sun, and so the tidal force FN is also directed vertically upward from the
earth (and from the sun). In magnitude FN approximately equals FZ .

We note that the tidal forces are independent of the orbital motion of the earth and would also
occur if the earth and sun were simply falling toward each other.

Figure 7.11: For the calculation of the tidal forces.

To obtain a general expression for the tidal force at an arbitrary point B over the earth (Fig-
ure 7.11), we introduce the radius vector r of this point relative to the center of the earth, and its
radius vector rs = R + r relative to the sun S, where R is the radius vector of the earth relative
to the sun. The tidal force Ftid experienced by a body of mass m at point B (in the non-inertial
geocentric frame) is the resultant of its gravitational attraction Fgr to the sun and the pseudo force
of inertia Fin = −ma0 = −GmMsR/R3:

Ftid = Fgr + Fin = −GmMs

(
rs

r3
s

− R
R3

)
. (7.52)

Next we express rs in Eq. (7.52) as the sum R + r and calculate the square of rs taking into
account that r ¿ R:

r2
s = (R + r)2 = R2 + 2(R · r) + r2 ≈ R2

(
1 + 2

(R · r)
R2

)
.

Therefore,
1
r3
s

≈ 1
R3

(
1− 3

(R · r)
R2

)
.

Substituting this expression for 1/r3
s into Eq. (7.52) yields:

Ftid ≈ −G
mMs

R3

[
(R + r)

(
1− 3

(R · r)
R2

)
−R

]

≈ −G
mMs

R3

[
r− 3R

(R · r)
R2

]
. (7.53)

For the points A and B considered above (Figure 7.10) radius vector r is perpendicular to R
and the scalar product R · r in Eq. (7.53) is zero. Hence at these points the tidal force is directed
against r (vertically downward) and equals GmMsr/R3. For the points Z and N the tidal force,
according to Eq. (7.53), is directed along r (vertically upward), and is two times greater than at
points A and B. Multiplying the right side of Eq. (7.53) by the unit vector r/r, we obtain the
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following dependence of the vertical component of the tidal force Ftid on the angle θ between R
and r:

(Ftid)vert = G
mMs

R3
r(3 cos2 θ − 1). (7.54)

At all the points for which cos θ = ±1/
√

3, the tidal force is directed horizontally. The horizontal
component of the tidal force is more influential on the ocean tides and on the orbits of earth’s
satellites.

For the horizontal component of the tidal force at an arbitrary point B whose geocentric position
is determined by coordinates r and θ, Eq. (7.53) yields:

(Ftid)hor = −3G
mMs

R3
r cos θ sin θ. (7.55)

The horizontal component (Ftid)hor is maximal at the points for which θ = ±45◦ and θ = ±135◦.
The tidal force experienced by a satellite is proportional to its distance r from the center of the

earth and inversely proportional to the cube of the distance R to the celestial body that causes the
force. The above expressions are valid also for the tidal forces produced by the moon if we replace
there the mass of the sun Ms with the mass of the moon, and the sun-earth distance R with the
moon-earth distance. Although the mass of the moon is much smaller than that of the sun, lunar
perturbations of a satellite’s orbit are more than twice as great as the solar perturbations, because
the moon is much closer to the earth. A simulation of lunar perturbations of an earth’s satellite is
described in Chapter 5.

Although the tide-generating forces are very small in comparison with the earth’s force of
gravity (on the surface of the earth the lunar tidal force at its maximum being only 1.14 · 10−7

times the force of gravity), their effects upon the sea are considerable because of their horizontal
component. Since the earth is not surrounded by an uninterrupted envelope of water but rather
shows a very irregular alternation of sea and land, the mechanism of the response of the oceans
and seas to the tidal forces is extremely complex. The solid body of the earth also experiences
twice-daily tides with a maximum amplitude of about 30 centimeters.

Thus, besides perturbing the satellites’ orbits, the gravitational field of one body in an orbit
about another tidally distorts the shape of the other body. Dissipation of energy stored in these
tidal distortions leads to a coupling that causes secular changes (always in the same direction) in
the orbit and in the spins of both bodies. In the earth-moon system, the dissipation of tidal energy
results in a slowing of the earth’s axial rotation while the moon’s orbit is gradually expanding, and
in the synchronization of the moon’s rotation with its orbital motion. That the moon keeps the
same part of its surface always turned toward the earth is attributed to the past effects of tidal
friction in the moon.

The theory of tidal friction was first developed mathematically after 1879 by the English as-
tronomer George Darwin (1845–1912). Tidal dissipation accounts for the current states of axial
rotation of several planets, the spin states of most of the planetary satellites, and the spins and
orbits of close binary stars. The distant planet Pluto and its satellite Charon are the only pair in
the solar system that have almost certainly reached the end point where further tidal evolution
has ceased. In this state the orbit is circular, with both bodies rotating synchronously with the
orbital motion and both spin axes perpendicular to the orbital plane. Similarly, many close binary
stars are observed to have circular orbits and synchronized spins—an example of evolution under
tidal forces elsewhere in the Milky Way.

Another manifestation of the tidal forces is the Roche limit, the minimum distance to which a
large (natural) satellite can approach its primary body without being torn apart by tidal forces.
To calculate this critical distance R, we equate the vertical tidal force, Eq. (7.54) with θ = 0 or
θ = π, exerted on a mass point on the surface of a satellite of radius rsat and mass msat by its
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primary of mass M , and the force of self-gravitation of the satellite (i.e., the force of gravitational
attraction of this mass point m to the satellite):

2
GmM

R3
rsat =

Gmmsat

r2
sat

,

whence

R = rsat
3

√
2M

msat
= rpl

3

√
2ρ

ρsat
.

In the latter expression rpl is the radius of the primary, ρ is its mean density, and ρsat is the
satellite’s mean density. If the satellite and its primary are of similar composition (ρ ≈ ρsat), the
theoretical limit is about 3

√
2 = 1.26 times the radius of the larger body. The famous rings of

Saturn lie inside Saturn’s Roche limit and may be the debris of a demolished moon. The limit was
first calculated by the French astronomer Edouard Roche (1820–1883). Artificial satellites are too
small to develop substantial tidal stresses.

7.10 Sphere of Gravitational Action

To determine the boundaries of the region of gravitational action of a smaller body with respect
to the heavier body, we consider a satellite or a spacecraft moving freely under the gravitational
attraction of the sun S and a planet P (Figure 7.12). The mass of the spacecraft is negligible
compared to the masses of the planet and sun. Hence the sun and the planet move as in the
two-body problem, in accordance with Kepler’s laws, along homothetic ellipses with a common
focus located at the center of mass of the system. In other words, we deal here with a restricted
three-body problem.

Figure 7.12: Sphere of gravitational action of the planet

In the neighborhood of the planet it is convenient to regard the motion of the satellite as
planetocentric, using the reference frame associated with the planet. The acceleration of the
satellite a in this reference frame is produced mainly by the gravitational attraction towards the
planet. According to the Newton’s law of universal gravitation, this acceleration can be written in
the following form:

a = −Gm
r
r3

. (7.56)

Here m is the mass of the planet, and r is the radius vector from the center of the planet to
the satellite. An additional (perturbational) acceleration a′ of the satellite due to the sun in the
planetocentric motion is the vectorial difference between the accelerations which the gravitational
field of the sun gives to the satellite and to the planet:

a′ = −GM

(
rs

r3
s

− R
R3

)
. (7.57)
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Here M is the mass of the sun, rs is the radius vector from the sun to the satellite, and R is
the radius vector from the sun to the planet.

Outside of the sphere of gravitational action of the planet, it is more convenient to consider the
motion of the spacecraft as heliocentric, using the reference frame associated with the sun. Here
the main acceleration as of the spacecraft is produced by its gravitational attraction to the sun:

as = −GM
rs

r3
s

. (7.58)

In this case, the perturbational acceleration a′s is the difference between the accelerations which
the gravitational field of the planet gives to the spacecraft and to the sun:

a′s = −Gm

(
r
r3
− R

R3

)
≈ −Gm

r
r3

. (7.59)

Assuming the mass m of the planet to be small compared to the mass M of the sun, we can
suppose that the radius of the planet’s sphere of gravitational action with respect to the sun is
much smaller than the distance R between them. This means that the values of r in Eq. (7.59),
which are of interest (which correspond to the boundaries of the required sphere of gravitational
action of the planet), are small compared to R. Therefore we can neglect the second term in
the parentheses, whose physical sense is the acceleration of the sun produced by the planet. In
other words, when the spacecraft is not very far from the planet, its acceleration produced by the
gravitational field of the planet is much greater than the acceleration of the sun produced by the
planet.

We can regard the ratio of the magnitude of the perturbational acceleration (Eq. (7.59)) to
the magnitude of the main acceleration (Eq. (7.58)) as a measure of the nearness of the actual
motion of the spacecraft to its unperturbed Keplerian heliocentric motion. Instead of the ratio of
the absolute values of these accelerations a′s and as, let us consider the ratio of their squares:

(
a′s
as

)2

=
( m

M

)2 r4
s

r4
≈

( m

M

)2 R4

r4
. (7.60)

Similarly, the nearness of the actual motion of the satellite to its unperturbed Keplerian plane-
tocentric motion can be measured by the ratio of the squares of the corresponding perturbational
(a′) and main (a) accelerations, given by Eqs. (7.57) and (7.56). Before forming this ratio, we
rewrite Eq. (7.57) for the case in which m ¿ M . We represent the radius vector rs in Eq. (7.57) as
the sum R + r, and in calculating the square of rs we take into account that r ¿ R in the region
in which we are interested:

r2
s = (R + r)2 = R2 + 2(R · r) + r2 ≈ R2

(
1 + 2

(R · r)
R2

)
,

whence

1
r3
s

≈ 1
R3

(
1− 3

(R · r)
R2

)
.

Now Eq. (7.58) can be written as:

a′ ≈ −GM

R3

[
(R + r)

(
1− 3

(R · r)
R2

)
−R

]

≈ −GM

R3

[
r− 3R

(R · r)
R2

]
.
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The perturbational acceleration a′ in the motion that is described in the non-inertial planeto-
centric reference frame can be treated as an acceleration of the body produced by the tidal force
Ftid, see Eq. (7.53) of the preceding section.

We next form the ratio of the squares of the perturbational acceleration and main acceleration
in the planetocentric motion:

(
a′

a

)2

=
(

M

m

)2
r4

R6

[
r2 + 3

(R · r)2
R2

]
=

(
M

m

)2
r6

R6
(1 + 3 cos2 θ). (7.61)

We have here introduced the angle θ between the directions of vectors R and r (see Figure 7.12)
and have written their scalar product (R · r) as Rr cos θ.

The boundary of the sphere of gravitational action of a planet relative to the sun is assumed
by convention to be the surface on which the ratios of the perturbational and main accelerations
for the planetocentric and heliocentric motions are equal. Equating the right sides of Eqs. (7.61)
and (7.60), we find:

r

R
=

( m

M

)2/5 1
(1 + 3 cos2 θ)1/10

. (7.62)

For θ = ±π/2 (the transverse direction) the value of r in Eq. (7.62) is a maximum:

rmax = R
( m

M

)2/5

. (7.63)

This value is usually assumed as the radius of the sphere of gravitational action of a small body
(a planet) relative to the massive body (the sun).

For θ = 0 (the radial direction) the radius r in Eq. (7.62) is a minimum:

rmin = R
( m

M

)2/5 1
5
√

2
.

The ratio of the maximal (transverse) radius to the minimal radius (oriented along the line
joining the planet with the sun) is only 5

√
2 ≈ 1, 15. Therefore we can assume with good precision

a sphere of the radius rmax, given by Eq. (7.63), to be the boundary of the weakly perturbed
planetocentric motion.
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7.11 Exact Particular Solutions to the Three-Body Problem

For the circular restricted three-body problem there exists a class of exact solutions corresponding
to the equilibrium of the third body (whose mass is negligible compared to masses of the other two
bodies) at one of the five libration points (or Lagrange points) in the reference frame rotating with
the line joining the massive bodies. The simulations of the corresponding motions are described
in Chapter 5 of the Manual (see the program “Planet with a Satellite”). Below we consider a
mathematical proof of the existence of the triangular libration points and a method to calculate
positions of the collinear libration points.

Figure 7.13: Triangular libration points in the system with equal masses of the bodies A and B
(a) and with different masses (b).

The existence of the triangular libration points is nearly obvious in the special case in which
the masses of the bodies are equal and in which (in the center-of-mass-frame) the bodies move
opposite one another around a common circle whose diameter is R. (See Figure 7.13,a.) The
angular velocity ω of their rotation can be calculated using Newton’s second law. Applying the
law to one of the massive bodies (of mass m) that moves along a circle of radius R/2 under the
force of gravitational attraction by the other body, we write:

mω2R/2 = Gm2/R2,

whence ω2 = 2Gm/R3. If we place the third body (of a negligible mass ∆m) at the vertex S of the
equilateral triangle BAS whose base BA is the segment joining the massive bodies, the resulting
force of gravitational attraction on the third body by the two massive bodies is directed towards
the center of mass C, and its magnitude has the value needed to provide the third body with
the centripetal acceleration necessary for a circular motion synchronous with that of the massive
bodies. Indeed, the net gravitational force equals

√
3Gm∆m/R2, while the centripetal acceleration

of rotation (about the center of mass C along the circle of radius R
√

3/2 with the angular velocity
ω) equals ω2R

√
3/2 =

√
3Gm/R2.

Thus, if the third body at the libration point S is initially at rest in the rotating reference
frame, it remains there indefinitely. In other words, all the system of three bodies rotates as rigidly
about the center of mass C with the angular velocity ω =

√
2mG/R3. The triangular equilateral

configuration of the system is preserved during the motion. In the reference frame associated with
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one of the massive bodies, say, A, the third body moves around A along the same circular orbit as
does the other massive body B, either behind or in front of B by an angle of 60◦.

For a system in which the masses of the two massive bodies are different, the argument is a bit
more complicated. The circular motion of the system about the center of mass C (Figure 7.13,b)
occurs at an angular velocity ω =

√
(m1 + m2)G/R3. This expression is found in the same way

used in the preceding case of equal masses, by applying Newton’s second law to the circular motion
of one of the bodies. To prove that in this case the system of the three bodies can also rotate
rigidly, we consider the gravitational forces exerted on the third body by the massive bodies. We
must show that the resulting force is directed towards the center of mass, and its magnitude has
exactly the value needed to provide the third body with the necessary centripetal acceleration.

We draw a vector from the triangular libration point S (Figure 7.13,b) to the center of mass C,
and consider its components along the lateral sides of the triangle BAS (along the directions from
S to A and B). It is clear from the figure that these components are equal to the distances r1 and
r2 between the center of mass and masses B and A respectively. Next we show that this vector
can be treated as the resulting gravitational force F (in some scale) exerted on the third body S
of a negligible mass ∆m, and its components along the sides of the triangle—as the individual
gravitational forces FB and FA exerted on S by the body B of mass m1 and the body A of mass
m2 respectively.

We let R be the distance between the massive bodies A and B. Then r1 = Rm2/(m1 + m2)
and r2 = Rm1/(m1 + m2). According to the law of gravitation, FB = Gm1∆m/R2, and FA =
Gm2∆m/R2, because the distances between the libration point S and each of the bodies A and B
also equal R. We see that the ratio FA/FB equals m2/m1 = r1/r2, and hence the components of
the vector SC indeed can be treated as gravitational forces FA and FB exerted on S by the bodies
A and B. Therefore the sum of FA and FB is actually directed towards the center of mass C.

It remains only to show that the magnitude of the net force F = FA +FB has the value that is
required in order to provide the third body of mass ∆m with the necessary centripetal acceleration
ω2r = (m1 +m2)Gr/R3 (in the inertial, center-of-mass frame of reference), where r is the distance
between the center of mass C and the triangular libration point S. From Figure 7.13,b we see that
F/FB = r/r2, and, consequently, F/FB = (r/R)(m1 + m2)/m1. Since FB = Gm1∆m/R2, we find
that F = Gr/R3(m1 + m2)∆m; that is, the force has exactly the required value.

Thus, we have proved that the system can rotate rigidly about the center of mass. The bodies
move synchronously along concentric circles of different radii. In the reference frame associated
with one of the massive bodies, the other two bodies move around it along the same circular orbit
at an angular distance of 60 degrees. At one of the triangular libration points the light body lags
behind the massive body by 60◦, at the other libration point the light body leads the massive body
by the same angle.

The stability in the motion in the vicinity of the Lagrange triangular libration points in the
restricted planar circular three-body problem remained a subject of intense investigation in celestial
mechanics for more than two centuries. It was found that the triangular libration points are stable
for the mass ratio κ = m1/(m1 + m2) (where m1 < m2) satisfying the following condition:

κ(1− κ) < 1/27.

That is, the triangular libration points are stable if the mass of one of the massive bodies is much
smaller than that of the other (if the ratio m1/m2 does not exceed approximately 0.04). In the
earth – moon system m1/m2 = 0.0123, and so its triangular libration points are stable.

Next we determine the position of the three collinear libration points S1, S2, and S3 (Figure
7.14,a). If the mass of one of the massive bodies is considerably smaller that the mass of the
other, two of the collinear libration points occur near the smaller body (B in Figure 7.14,a). It is
convenient then to regard the third body (of a negligible mass) at one of these points as a satellite
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Figure 7.14: Collinear libration points S1, S2, and S3 in the system with different masses of the
bodies A and B (a) and with equal masses (b).

of the smaller body, in spite of the fact that the third body at a libration point is actually a
satellite of both massive bodies A and B simultaneously. Such a satellite moves synchronously
with A and B in their relative revolution. This revolution occurs with an angular velocity ω that
depends on the total mass m1 + m2 of the system and on the distance R between the massive
bodies: ω =

√
(m1 + m2)G/R3.

To determine the position of any of these points, say, the distance l1 of the outer libration
point S1 from the center of mass C, we can use the law of gravitation and Newton’s second law.
The resulting force exerted on the satellite at point S1 is the vector sum of the gravitational forces
created by the massive bodies B and A. Both these forces are directed towards the center of mass
C, and their sum must provide the satellite with a centripetal acceleration ω2l1 that is required
for the circular motion about the center of mass with the given angular velocity ω. Therefore,

ω2l1 = G

[
m1

(l1 − r1)2
+

m2

(l1 + r2)2

]
. (7.64)

Here r1 and r2 are the distances between the center of mass C and the massive bodies B (of mass
m1) and A (of mass m2) respectively: r1 = Rm2/(m1 + m2), r2 = Rm1/(m1 + m2). The first
term in the right side of Eq. (7.64) is due to the gravitational attraction to body B whose distance
from S1 equals l1 − r1, and the second term—to body A whose distance is l1 + r2. Substituting
into Eq. (7.64) the given value of the angular velocity squared, ω2 = (m1 + m2)G/R3, we obtain
an equation for determining the distance l1:

(m1 + m2)
l1
R3

=
m1

(l1 − r1)2
+

m2

(l1 + r2)2
. (7.65)

This equation can be solved numerically by iterations. First we rewrite Eq. (7.65) to give it
the form x = f(x) with f ′(x) < 1:

l1 = r1 +
√

m1

(m1 + m2)l1/R3 −m2/(l1 + r2)2
. (7.66)

Taking l1 = R as the first approximation, we substitute it into the right side of Eq. (7.66). The
left side is then the second approximation for l1. We substitute this approximate value of l1 into
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the right side, and obtain the next approximation for l1; and so on, until an approximate value
agrees with the preceding one to within a satisfactory accuracy.

In this way we find that the distance l1 of the outer libration point from the center of mass for
the system with m1 = m2 equals 1.1984 R; for m1 = 0.5 m2 it equals 1.2490 R; for m1 = 0.4 m2

l1 = 1.2597 R. For the earth – moon system m1 = 0.0123 m2, and so the distance of the outer
libration point from the center of mass is 1.1557 times the mean distance R between the earth and
the moon, or approximately 0.17 R from the moon.

Similarly we can find the position of the inner collinear libration point S2. Applying Newton’s
second law to the circular motion of a satellite at this point, we take into account that the gravita-
tional pull from body B is directed away from the center of revolution. For the distance l2 of this
libration point from the center of mass C we get the following values: in the system with equal
masses of the two bodies (m1 = m2) this point occurs at the center of mass, that is, l2 = 0 (evident
from symmetry considerations); for the system with m1 = 0.5 m2 l2 = 0.2374 R; for m1 = 0.4 m2

l2 = 0.30772 R. For the earth – moon system l2 = 0.8369 R, or approximately 0.15 R from the
moon.

The third collinear libration point S3 lies on the opposite side (with respect to B) of the larger
body A. In the system in which the masses of A and B are equal (Figure 7.14,b) its distance from
the center of mass is the same as for the libration point S1: l3 = l1 = 1.1984 R. This equality is
evident from the symmetry of the system. For the system with m1 = 0.5 m2 l3 = 1.1364 R; for
m1 = 0.4 m2 l3 = 1.1175 R. For the earth – moon system l3 = 1.005 R, or approximately 0.993
R on the side of the earth opposite the moon. A satellite at this libration point moves around
the earth along almost the same circular orbit as does the moon, provided the initial velocity of
the satellite has a proper value. During the motion, the moon and the satellite are located at the
diametrically opposite points of the orbit.

We discussed above exact particular solutions to the restricted three-body problem that describe
circular motions. However, similar exact solutions associated with the libration points exist also
for elliptic (and hyperbolic) motions of the three bodies. If in the system of two massive bodies
that revolve about the center of mass in homothetic elliptical orbits, a body of a negligible mass (a
satellite) is placed at one of the three collinear libration points, this body also can synchronously
trace a homothetic elliptical orbit provided its initial velocity has a proper value. During the
motion all three bodies remain on the same straight line. Although in this motion the distances
between the bodies vary, the ratio of these distances remains the same. An example of such motion
at an inner libration point is shown in Figure 5.15 of Chapter 5.

To explain the observed motions, we should first take into account that the sum of the forces
exerted on the satellite at a collinear libration point by both massive bodies is inversely propor-
tional to the square of the distance between the center of mass and the satellite. If the collinear
configuration with the constant ratio of the distances between the bodies is preserved during the
motion, we can consider the motion of the satellite to occur in a stationary effective central gravi-
tational field whose source is located at the center of mass. Next we should show that this effective
field at any of the collinear libration points gives the satellite an acceleration (towards the center
of mass) that relates to the acceleration of a massive body (under the gravitational pull of the
other body) just as the distance of the satellite to the center of mass relates to the distance of
the corresponding massive body to the center of mass. Then, if the initial velocity of the satellite
is related in the same way to the velocity of the massive body, the satellite and the body trace
synchronously homothetic Keplerian orbits. The collinear configuration is preserved during the
motion.

Elliptic (and hyperbolic) motions are also possible if a satellite is located at a triangular libration
point (at the third vertex of the equilateral triangle whose base is the line joining the massive
bodies). The equilateral triangular configuration of the system is preserved during the motion in
which the three bodies move synchronously in ellipses with a common focus at the center of mass
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of the system. An example of this motion is shown in Figure 5.14 of Chapter 5. The triangle ABS
formed by the bodies rotates non-uniformly, and the lengths of its sides vary periodically during
the rotation. That this periodic Keplerian motion of the satellite is possible can be similarly shown
using the concept of a stationary effective central gravitational field with a source at the center of
mass. The resulting force of attraction by the two massive bodies, as we have shown above for the
case of the circular motions, again is directed to the center of mass, and its magnitude is inversely
proportional to the square of the distance between the satellite and the center of mass.

7.12 Non-Restricted Three-Body Problem

The exact particular solutions in which the bodies synchronously trace congruent elliptical (or
hyperbolic) orbits lying in the same plane exist even for the unrestricted three-body problem
in which the mass of one of the bodies cannot be considered as negligible. The existence of such
simple particular solutions was first shown by Lagrange. Two types of such solutions correspond to
equilateral triangular configurations of the bodies, and three more types to collinear configurations.
For each of the three possible collinear configurations, the distances between the bodies should be
in a certain ratio that is preserved during the motion. This ratio depends on masses m1, m2, and
m3 of the bodies and is determined by an equation of the 5th power. Even though the practical
importance of these particular solutions may seem doubtful, their existence is curious in principle.

The possibility of simple Keplerian motions in the collinear configuration is almost evident for
the special case of a system of two planets of equal masses that orbit a single star. Let the planets
initially lie on the same straight line with the star at the mid point (Figure 7.12). If the planets
have equal and opposite initial velocities (in the frame of reference of the star), this configuration
of the three bodies is preserved during their further motion.

Figure 7.15: Keplerian motions of the identical planets in a special case of the three-body problem
(a symmetric collinear position of the planets relative to the star).

Next we show that the motion of the planets in this system is Keplerian. The center of mass
of the system is initially located at the center of the star, and it remains there during the motion
since the planets have equal and opposite velocities. The net force exerted on each of the planets
is formed by addition of the forces of gravitational attraction to the star and to the other planet.
This resulting force is always directed toward the center of the star, and its magnitude is inversely
proportional to the square of the distance from the star. Thus

F = G
mM

r2
+ G

mm

(2r)2
= G

m(M + m/4)
r2

. (7.67)
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Here G is the gravitational constant, M is the mass of the star, m is the mass of either of the
planets, and r is the distance from the star to either of the planets.

It follows from Eq. (7.67) that in the symmetrical configuration the motion of each of the
planets occurs along a Keplerian ellipse, as if the motion were governed solely by an effective
stationary central Newtonian gravitational field whose stationary source is characterized by a
mass of M + m/4. The planets in such a system move synchronously along identical ellipses with
a common focus at the center of mass of the system. At any moment the planets are located at
the opposite ends of the straight line that passes through the center of the star (see Figure 7.12).

With the help of Newton’s second law, we can calculate the velocity of the planets for the special
case of circular orbits. Equating the force given by Eq. (7.67) to the product of the planet’s mass
m and the centripetal acceleration v2

c/r, we obtain for the velocity vc of the planet in the circular
orbit of a radius r:

vc =

√
G

r
(M +

m

4
). (7.68)

The period of revolution of the planets along such circular orbits is found by dividing the length
of the orbit 2πr by the circular velocity vc:

T =
2πr

vc
= 2π

√
r3

G(M + m/4)
. (7.69)

This expression is a generalization of Kepler’s third law for the special case of the planetary
motion under consideration. Equation (7.69) is equally valid for elliptic motions of the planets
provided we replace the radius r with the semimajor axis a of the elliptical orbit.

The collinear particular solution of the three-body problem discussed above is also valid for a
planet in the double star system whose components have equal masses. The identical components
of the double star move along equal elliptical (or circular) orbits, and the planet that is placed
at rest at the center of mass of the system remains there in equilibrium during the motion of the
components. In this case in Eqs. (7.67)–(7.69) we let the mass m be the mass of each of the double
star components, and the mass M be the mass of the planet.

The equilibrium of the planet at the center of the segment joining the orbiting components
of the double star is unstable. Hence the particular solution of the three-body problem under
discussion describes a motion that is unstable with respect to any (arbitrarily small) variations of
the initial conditions. We can easily observe this instability in the simulation experiment.

Next we give a detailed explanation of the exact particular solutions to the unrestricted three-
body problem for the triangular equilateral configuration of the bodies. The case in which the
masses of the bodies are equal is discussed in Chapter 5 (see p. 112). Below we show that simple
Keplerian motions are possible when the masses of the bodies are different.

Let the bodies 1, 2, and 3 (of masses m1, m2, and m3 respectively) be located at the vertices of
the equilateral triangle whose sides equal R (Figure 7.16 shows the system with m1 = 0.3m3 and
m2 = 0.6m3). We denote by r12 and r13 the radius vectors of bodies 2 and 3 relative to 1 (that
is, the vectors joining 1 with 2 and 3 respectively), and by F12 and F13 the gravitational forces
exerted on 1 by 2 and 3 respectively. According to the law of gravitation,

F12 = Gm1m2
r12

R3
, F13 = Gm1m3

r13

R3
.

We add F12 and F13 vectorially to find the total gravitational force F1 exerted on 1:

F1 = F12 + F13 =
Gm1

R3
(m2r12 + m3r13). (7.70)
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Figure 7.16: Regular Keplerian motions of three bodies of different masses in the equilateral
configuration.

This force F1 is directed to the center of mass C of the system. Indeed, the radius vector r1C

of the center of mass relative to 1 (the vector joining 1 with C) is given by:

r1C =
(m2r12 + m3r13)

M
, (7.71)

where M = m1 + m2 + m3 is the total mass of the system.
With the help of Eq. (7.71), we can express the total force F1 exerted on the body 1 by the

other two bodies 2 and 3 in terms of M and r1C :

F1 = F12 + F13 =
GMm1

R3
r1C . (7.72)

We conclude from Eq. (7.72) that the acceleration a1 of the body 1 produced by the combined
gravitation of bodies 2 and 3 is proportional to r1C . It is clear from symmetry that similar
expressions are valid for the accelerations of the other two bodies 2 and 3 of the system:

a1 =
GM

R3
r1C , a2 =

GM

R3
r2C , a3 =

GM

R3
r3C . (7.73)

Here r2C and r3C are the vectors joining the bodies 1 and 2 with the center of mass C. Therefore
the accelerations of all three bodies are directed to the center of mass, and the magnitudes of
these accelerations are proportional to the distances of the bodies from the center of mass. This
conclusion means, in particular, that the system of three bodies in the equilateral configuration
can rotate as a whole (as a solid) about the center of mass under the forces of mutual gravitation.
We can find the angular velocity ω of this rotation with the help of Newton’s second law. Equating
the product of mass of one of the bodies (say, m1) and the centripetal acceleration of its rotation
about C to the total force exerted on this body by the other two bodies, Eq. (7.72), we obtain:

m1ω
2rC1 =

GMm1

R3
r1C , whence ω =

√
GM

R3
=

√
G(m1 + m2 + m3)

R3
. (7.74)

Such a uniform rotation of the system in the equilateral configuration can occur only if the
initial velocities of the bodies in the center-of-mass frame are exactly perpendicular to the radius
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vectors of the bodies relative the center of mass, and magnitudes of the velocities exactly equal
the product of ω and the distances of the bodies from the center of mass. The motion is unstable.
That is, if one of the above conditions is even if slightly violated, the equilateral configuration soon
becomes distorted, and the motion of the bodies becomes irregular.

Uniform rotation in not the only possible regular periodic motion of the system in the equilateral
configuration. We can show that the total gravitational force exerted on any of the bodies by the
other two, being directed toward the center of mass, is inversely proportional to the square of the
distance to the center of mass. Therefore under such an effectively stationary central Newtonian
force (although created by the moving bodies) the body can trace a closed elliptical Keplerian
orbit.

In order to prove the property mentioned above of the effective gravitational field, let us express
the distance of one of the bodies (say, 1) from the center of mass C in terms of the distance R
between any two bodies (the side of the equilateral triangle) and masses of the bodies. Calculating
the square of r1C , Eq. (7.71), and taking into account that the magnitudes of vectors r12 and r13

equal R, and that the angle between them equals 60◦, we find r2
1C = R2(m2

2 + m2
3 + m2m3)/M2,

whence

R2 =
M2

m2
2 + m2

3 + m2m3
r2
1C .

Substituting R into Eq. (7.72), we obtain:

F1 = m1
G(m2

2 + m2
3 + m2m3)3/2

M2

r1C

r3
1C

. (7.75)

Equation (7.75) shows that the total gravitational force exerted on 1 by the other two bodies
is directed to the center of mass C of the system and is inversely proportional to the square of the
distance between the body and the center of mass. Under this force the body moves in a Keplerian
ellipse with one focus at the center of mass. The same is true for the other two bodies. And since
the accelerations of the bodies, according to Eqs. (7.73), are proportional to their distances from
the center of mass, all three bodies can move synchronously in homothetic ellipses with a common
focus at the center of mass, thus preserving the equilateral configuration. To simulate this regular,
periodic motion, we should also choose certain initial velocities of the bodies. In the center-of-mass
reference frame, the velocities must be proportional to the distances of the bodies from the center
of mass and must make equal angles with the corresponding radius vectors. An example of such a
motion is shown in Figure 5.36 (see Chapter 5).



Glossary

• Acceleration of free fall. The acceleration of free fall is the acceleration experienced by
any body moving freely under the action only of the gravitational field. The acceleration
of free fall is also called the acceleration due to gravity. In the same gravitational field all
bodies, independently of their masses, fall with the same acceleration. Moreover, the accel-
eration is independent of the nature of the falling body. This property has been established
experimentally with great precision. The property indicates that for all bodies the inertial
mass min (the mass that appears in Newton’s second law of motion) is strictly proportional
to the gravitational mass mgr that characterizes the force experienced by the body in the
gravitational field (the mass that appears in Newton’s law of gravitation). Although the two
masses characterize different properties of the body, they are physically identical (equivalent),
and thus can be measured in the same units (mgr = min). Einstein came to a conclusion
that this exact coincidence of the two masses cannot be accidental, but rather indicates the
equivalence of inertial and gravitational phenomena.

• Aphelion. The aphelion is the point in the finite orbit of a planet, comet, asteroid, or
artificial satellite in solar orbit at which the orbiting body is farthest from the sun. At the
perihelion the orbiting body is nearest to the sun.

• Apogee. The apogee is the point in the orbit of the moon, or of an artificial earth satellite,
at which it is furthest from the earth. At the perigee of an orbit, the orbiting body is nearest
to the earth.

• Asteroid. Asteroids (or minor planets) are small bodies that revolve around the sun between
the orbits of Mars and Jupiter in a region called the asteroid belt. The size of asteroids varies
from about 1000 km for the largest (Ceres) to less than 1 km in diameter. It is estimated
that there are about 500 asteroids with diameters in excess of 100 km.

• Chaos. Chaos is an irregular, seemingly random behavior occurring in a system governed
by deterministic laws. Planetary dynamics is one of numerous examples of chaos in physics.
To exhibit chaos, the system must be described by nonlinear differential equations involving
several variables. Such systems may be very sensitive to the initial conditions, so that a very
small initial difference may make an enormous change in the future state of the system.

• Circular velocity. Circular velocity vc is the speed that a celestial body or a satellite
must have in order to stay in a circular orbit of a definite radius (around the sun or some
other celestial body). Its value can be calculated on the basis of Newton’s second law by
equating the centripetal acceleration of the body (multiplied by the mass of the body) to the
gravitational force of attraction exerted on the orbiting body by the central body:

vc =

√
GM

r
, vc =

√
gR2

r
.
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Here G is the gravitational constant, M is the mass of the central body, and r is the radius
of the circular orbit. The second expression gives the circular velocity for an earth’s satellite.
In it g = 9.8 m/s2 is the acceleration of free fall near the earth’s surface, R = 6370 km is the
earth’s radius, and r is the radius of the circular orbit.

For a given central body, the circular velocity is inversely proportional to the square root of
the radius r of the orbit. The circular velocity is independent of the mass m of the orbiting
body provided m ¿ M . Otherwise we should consider the orbital motion of both bodies
around the center of mass of the system rather then the motion of one of them around the
other.

• Comet. A comet is a small celestial body that travels around the sun either in a highly
eccentric elliptical orbit, or in a parabolic (or hyperbolic) trajectory. Short-period comets
have orbital periods of less than 150 years. The periods of long-period comets may exceed
100,000 years. The most famous short-period comet is Halley’s comet, whose period is about
76 years. Its last visit was in 1986. The comet is named after Edmund Halley (1656 – 1742)
who first calculated its orbit.

Typical comets have a nucleus of ice and dust, a nebulous cloud of gas and dust (called
the coma) that surrounds the nucleus, and the comet tail also of gas and dust, which only
appears when the comet is near the sun.

• Conic Sections. A conic or conic section is a figure formed by the intersection of a plane
and a circular cone. If the intersecting plane is perpendicular to the axis of the cone, the
figure formed is a circle. If the intersecting plane is inclined to the axis at an angle greater
than half the apex angle of the cone, it is an ellipse. If the plane is parallel to the sloping side
of the cone, the figure is a parabola. If the plane cuts both halves of the cone, two branches
of a hyperbola are formed by the intersection.

• Ellipse. An ellipse is a conic (or conic section) that can be defined as a plane curve whose
points satisfy the following property: the sum of the distances from any point of the curve
to the two fixed points (called the foci of the ellipse) is constant.

The equation of an ellipse in polar coordinates can be written as:

r(ϕ) =
p

1 + e cos(ϕ− ϕ0)
.

The quantity p is called the semilatus rectum or the orbital parameter (or the focal parameter)
of the conic, and the dimensionless parameter e is called the eccentricity of the conic section.
For e = 0 both foci of the ellipse coincide, and curve becomes a circle. For e = 1 the ellipse
degenerates into a straight line joining the foci.

The ellipse has two axes of symmetry (the major and minor axes), which are mutually
perpendicular. The area bounded by an ellipse equals πab, where a and b are the semimajor
and semiminor axes. The foci of an ellipse are at a distance ea from its center, where e is
the eccentricity.

• Escape velocity. The escape velocity is the minimum speed needed by a space vehicle
to escape from the gravitational field of the earth, moon, or other celestial body. The
gravitational potential energy of a body with mass m in the central gravitational field created
by a celestial body of mass M equals −GmM/r. To escape from the gravitational field, the
body must have a kinetic energy that exceeds the magnitude |GmM/r| of this potential
energy. Hence the escape velocity is inversely proportional to the square root of the distance
r from the celestial body.
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• Hodograph of the velocity vector. Generally, hodograph of a vector is the curve generated
by the end of the changing vector while the origin of the vector remains at the same point.
For example, the spatial trajectory of a moving particle is the hodograph of its radius vector.

The hodograph of the velocity vector of a body that moves in a central Newtonian gravita-
tional field is a circle (or a part of a circle). This property of an arbitrary Keplerian motion
is illustrated by the simulation program “Hodograph of the Velocity.”

• Hyperbola. A hyperbola is a conic section that can be defined as a curve having the
following property: the difference in the distances of any point of a hyperbola from two fixed
points (called the foci of the hyperbola) is constant. The equation of a hyperbola in polar
coordinates is:

r(ϕ) =
p

1 + e cosϕ
,

where the eccentricity e > 1. (Compare this expression with that for the equation of an
ellipse, where e < 1). Keplerian motion with a positive value of the total energy occurs along
a hyperbola.

• Keplerian motion. The motion under a sole central force of attraction that decreases as
the square of the distance from the center of force. Examples of Keplerian motion are the
unperturbed motion of a planet around the sun, and the motion of satellites around the earth
(and other planets). Keplerian motion obeys Kepler’s laws and arises from the Newtonian
force of gravitation.

• Kepler’s laws. Three laws that govern the motion of planets around the sun:

1. The orbits of the planets are ellipses with the sun at one focus of the ellipse (Kepler’s
First Law).

2. Each planet revolves around the sun so that the radius vector connecting the sun to the
planet sweeps out equal areas in equal times (Kepler’s Second Law).

3. The ratio of the square of each planet’s period to the cube of its distance from the sun
is a constant for all the planets (Kepler’s Third Law).

These laws of planetary motion were established by Johannes Kepler (1571 – 1630) in about
1610 on the basis of astronomical observations made by Tycho Brahe (1546 – 1601). The
laws hold for any Keplerian motion governed by a central force that decreases as the square
of the distance from the center of force.

• Newton’s law of gravitation. For any two point masses m1 and m2 the force of gravita-
tional attraction decreases as the square of distance r between the points:

Fr(r) = −G
m1m2

r2
, F12 = −G

m1m2

r2

r12

r
.

Here G is the gravitational constant, r is the distance between the interacting bodies (mass
points), whose masses are m1 and m2. The first expression gives the projection of the
gravitational force onto the radius vector r (the negative sign shows that it is the force of
attraction directed towards the origin). In the second expression (that gives the vector F12

of the gravitational force exerted on mass m1 by m2), the vector r12 is directed from m1 to
m2.
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This expression is equally valid for the gravitational force exerted on a small body (point
mass) by an arbitrarily large body with spherically symmetric mass distribution, and for the
force of gravitational interaction between two spherically symmetric massive bodies, such as
stars or planets. In this case r is the center-to-center distance between the bodies.

• Osculating orbit. In the stationary central gravitational field whose force is decreasing
according to the inverse square law, an orbit of a satellite (or a planet) is exactly an ellipse.
When small perturbations are taken into account, it is convenient to approximately consider
the orbit as an ellipse whose parameters are defined by the instantaneous values of the position
and velocity vectors. Small perturbations cause the parameters of the ellipse to vary slowly.
Such an ellipse with varying parameters is called an osculating orbit. That is, the osculating
ellipse is that elliptical orbit that would be assumed by the body if all the perturbing forces
were suddenly turned off.

• Parabola. A parabola is a conic section that can be defined as a curve having the following
property: the distance of any point of a parabola from the focus is equal to its perpendicular
distance from a straight line called the directrix of the parabola. Keplerian motion with a
total energy of zero occurs along a parabola.

• Perigee. See Apogee.

• Perihelion. See Aphelion.

• Perturbation. A perturbation is a departure of a celestial body from the trajectory or orbit
it would follow were it to move only under the influence of a single central gravitational force
that decreases as the square of the distance from the center of force. Such a force is described
by Newton’s law of gravitation. According to Kepler’s laws, a single planet orbiting the sun
or a satellite orbiting the earth moves in an elliptical orbit. But in fact, planets are perturbed
from elliptical orbits by the gravitational forces exerted on them by other planets. Similarly,
satellites orbiting the earth are perturbed by the gravitational effect of the sun and the moon
(by the tidal forces), and by the deviation of the earth’s shape from a sphere. Parabolic or
hyperbolic trajectories of comets are perturbed when they pass close to planets.

• Sidereal period. The sidereal period is the time taken for a planet (or satellite) to complete
one revolution of its orbit measured with reference to the background of the stars.

• Sphere of gravitational action. A concept used in the approximate treatment of the
restricted three-body problem by the method of joined conic sections. For example, the
(passive) motion of a spacecraft en route to another planet within the sphere of gravitational
action of the earth can be treated as a geocentric Keplerian motion almost unperturbed by
the sun. After the spacecraft leaves the sphere, its motion is approximately a heliocentric
Keplerian motion. After the spacecraft enters the sphere of gravitational action of the target
planet, its motion is treated as a planetocentric Keplerian motion. On the boundary of the
sphere of gravitational action the two Keplerian orbits are joined by the transformation of
the coordinates and velocity of the spacecraft from one frame of reference to the other, and
these new values are regarded as the initial conditions for the continued Keplerian motion in
the new frame of reference.

The boundary of the sphere of gravitational action of a planet relative to the sun is assumed
by convention to be the surface on which the ratio of the perturbational acceleration to main
acceleration for the planetocentric motion equals such a ratio for the heliocentric motion.
The value
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r = R
( m

M

)2/5

gives the radius of the sphere of gravitational action of a small body (a planet of mass m)
relative to the massive body (the sun, mass M). Here R is the distance between the bodies.

• Synodic period. The mean time that elapses between two successive identical configura-
tions of a planet and the sun as seen from the earth, e.g., the mean time S between successive
returns to the opposition. For inferior planets 1/S = 1/T−1/E, where T is the sidereal period
of the planet, and E is the sidereal period of the earth. For superior planets 1/S = 1/E−1/T .
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