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A detailed treatment of tide-generating forces is given, followed by a simplified dynamic theory of
tidal waves. To clarify the underlying physics, we use a simple model of the ocean that consists of
a water shell of uniform depth completely covering the globe. The treatment is appropriate for
college and university undergraduate students studying introductory geophysics or astronomy,
general physics, or intermediate mechanics. A computer simulation is developed to aid in
understanding the properties of sun- or moon-induced tide-generating forces and of the stationary
tidal waves created by these forces in the open ocean. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

All textbooks in introductory astronomy and many in
physics and intermediate mechanics mention the existence of
oceanic tides as an interesting manifestation of universal
gravitation. Pedagogical papers devoted to the tides~see, for
example, Refs. 1–9! testify to the fact that many teachers are
interested in this topic, but are not satisfied with the clarity
and correctness of the commonly accepted explanations of
the physics of tidal phenomena. A review of textbooks and
related literature shows that the most important aspects of the
origin and properties of tides are often treated inaccurately or
even erroneously. Much of the confusion over generating
tides is related to the roles of the orbital motion of the moon
and earth about their common center of mass and of the
earth’s axial rotation. In discussing the physics behind this
phenomenon, authors usually explain~more or less success-
fully ! why two tidal swells appear on the opposite sides of
the globe. However, it is difficult to find a plausible expla-
nation of the physical mechanism responsible for the phase
shift between the zenith of the moon and the moment of high
tide, which at some places approaches 90°. Misunderstand-
ings also occur in discussions about the role of tidal friction
in the retardation of axial rotations and in the evolution of
orbital motions of the gravitationally coupled celestial bod-
ies.

To clarify the basic physics underlying the tidal phenom-
ena, we suggest a rather simple but rigorous treatment of the
tide-generating forces, followed by a theory of the circulat-
ing tidal wave produced by these forces. This treatment uses
a simplified model of the ocean consisting of a water shell of
uniform depth entirely covering the globe. A computer simu-
lation is developed to support the analytical treatment.10 The
simulation gives a dynamical picture of the forces and the
tidal wave driven by these forces in the open ocean. This
paper and the simulation are intended only to clarify the
physical background of this natural phenomenon and do not
assume to describe the complete picture. The purely theoret-
ical quantitative description of tides for a given location on
the earth, derived solely from first principles, is hardly pos-
sible because of the extremely complex structure of the
oceans, the actual system that responds with tides and tidal
currents to the well-known tide-generating forces.

The paper is organized as follows. First we discuss quali-
tatively the physical nature of the sun- and moon-induced
tide-generating forces in a nonrotating geocentric frame of
reference, deriving the mathematical expressions for these

forces at an arbitrary point on the earth. Next the static~equi-
librium! distortion of the ocean surface under these forces is
determined. Then we show that the same expressions for the
tidal forces are applicable on the rotating earth, and we dis-
cuss how these forces depend on time. We show that a uni-
form rotation of the system of tidal forces coupled with the
apparent motion of the sun~moon! can be represented as a
superposition of two oscillating quadrupole systems of forces
whose axes make an angle of 45° with respect to one an-
other. Each of these systems of forces generates a steady-
state forced oscillation of the ocean~a standing wave!. Next
we treat the tidal wave circulating around the globe as a
superposition of these standing waves. Finally the real-world
complications of this simplified picture are discussed briefly,
as well as the role of tidal friction in the evolution of the
axial rotations and orbital revolutions of celestial bodies.

II. THE TIDE-GENERATING FORCES: AN
ELEMENTARY APPROACH

The tides are manifested by alternating vertical displace-
ments of the surface of the sea coupled with horizontal
movements of the water that are called thetidal currents. It
is well known that the tides are caused by the varying gravi-
tational forces that the moon and sun exert on both the earth
and its oceans. More exactly, the origin of tidal phenomena is
related to the inhomogeneity~nonuniformity! of the lunar
and solar gravitational fields across the globe.

The gravitational force the moon exerts on any body on
the surface of the earth is much smaller than the gravitational
force of the sun. However, because the moon is much closer
to the earth than the sun, the inhomogeneity of the lunar
gravitational field across the earth is considerably greater
than that of the solar field. As a result, moon-induced tides
are more than twice as great as sun-induced tides. Neverthe-
less, to arrive more easily at an understanding of the physical
origin of tide-generating forces, we begin our analysis with
sun-induced tides. These are somewhat simpler to explain
because the center of mass of the sun–earth system very
nearly coincides with the center of the sun.

We next divide the problem into two parts: First we dis-
cuss the origin and properties of tide-generating forces, after
which we investigate qualitatively the much more compli-
cated case of the dynamical effect that these time-varying
forces have on the ocean. We note that much of the confu-

1 1Am. J. Phys.70 ~9!, September 2002 http://ojps.aip.org/ajp/ © 2002 American Association of Physics Teachers



sion in the literature is related to the first ~rather simple! part
of this problem, which can be completely and unambigu-
ously solved using Newtonian mechanics.

The earth as a whole moves with an acceleration relative
to an inertial reference frame. This acceleration is produced
by the gravitational attraction of the earth to the sun~and
also to the moon and to all other celestial bodies!. Although
the earth travels in an almost circular orbit, its centripetal
accelerationa0 in this orbital motion is generated by the
gravitational pull of the sun and hence is just theaccelera-
tion of free fall, which is independent of the orbital velocity.
The earth would move with the same acceleration were it
freely falling in the gravitational field of the sun. What is
important in this problem is the acceleration, not the orbital
velocity, of the earth.

To better understand the tides, we first use anonrotating
geocentric reference frame. Although the origin of this frame
moves approximately in a circle around the sun~more ex-
actly, around the center of mass of the sun–earth system!, the
frame itself does not rotate because the directions of its axes
are fixed relative to the distant stars. That is, the motion of
this frame—revolution without rotation—is a translational
~though nearly circular! motion. It reminds us of ‘‘the circu-
lar motion of the frying pan’’ in the hands of a cook~see Ref.
1!. With respect to inertial space, all points of this reference
frame move with an accelerationa0 whose magnitude and
direction are the same for all the points. Any body of massm
whose motion is referred to this noninertial geocentric frame
~for example, an earth satellite, or a drop of water in the
ocean! is subject to the pseudoforce of inertia,Fin52ma0 ,
which is independent of the position of the body relative to
the earth. If the body were placed at the center of the earth,
this pseudoforce would exactly balance the gravitational at-
traction of the body to the sun. In other words, if we consider
the earth as a giant spaceship orbiting the sun, a body placed
at the center of this ship would seem to be weightless with
respect to the gravitation of the sun, just as astronauts on an
orbital station seem to be weightless in the gravitational field
of the earth.

The force of inertia,Fin52ma0 , experienced by a body
in the freely falling geocentric frame of reference~or in the
frame that revolves without axial rotation about the sun–
earth center of mass!, has the same magnitude and direction
everywhere on the earth. On the other hand, the gravitational
pull of the sun,Fsun, experienced by the body diminishes
with its distance from the sun and is directed to the sun, and
hence both the magnitude and direction ofFsundepend on the
position of the body on the earth. Because the earth is an
extended body, the pseudoforceFin and the forceFsun are
generally unequal and not exactly opposite, except at the
center of the earth. The combined actions of the gravitational
pull of the sun and the pseudoforce of inertia is thetidal
force.

In other words, the tidal force at a given position near the
earth equals the vector difference of the gravitational pull the
sun exerts on an object at this position and the gravitational
pull the sun would exert on this object were it at the center of
the earth. We may avoid using a noninertial reference frame
if we are not inclined to introduce the concept of the pseudo-
force of inertia to students. In doing so, we can use a some-
what different language in the subsequent derivation of the
tidal force: Instead of discussing the vector addition of the
pull of the sun and the corresponding pseudoforce of inertia

arising from the noninertial character of the reference frame,
we can use instead an inertial frame, in which the tidal force
can be found by the vector subtraction of the gravitational
force of the sun on the body at its given location with the
force of the sun on the body were it located at the center of
the earth. Indeed, when viewing the situation on the earth
from the inertial frame of reference, we can apply the Gal-
ilean law according to which, in the same gravitational field
~here the field of the sun!, all free bodies experience equal
accelerations. Hence the earth as a whole and all free bodies
on the earth, being subjected to almost the same solar gravi-
tational field, are very nearly accelerated toward the sun.
Consequently we do not particularly notice the influence of
solar gravitation on what happens on earth. The small differ-
ences between the acceleration of the earth as a whole and of
the earthly bodies depend on the distances of the bodies from
the center of the earth because these differences are caused
by the nonuniformity of the solar gravitational field over the
extent of the earth.11

These differential effects of gravity give rise, in particular,
to solar gravitational perturbations of an earth satellite’s geo-
centric orbit. The tide-generating forces slightly distort the
earth’s gravitational pull that governs the satellite’s motion
so that after a revolution, the satellite does not return to the
same point of the geocentric reference frame. On the surface
of the earth, these same forces give rise to the tides. We
emphasize that tidal forces are caused not by the sun’s gravi-
tational field itself, but rather by the nonuniformity of this
field.

Figure 1 illustrates the origin and properties of the tide-
generating forces produced by the sun. The free-fall accel-
eration of the earthE in the gravitational field of the sunS is
a05GMsun/R

2, whereM sun is the mass of the sun, andR is
the sun–earth distance. The gravitational pull of the sunFsun

experienced by the body~for example, a satellite! at pointA
almost equals the force of inertiaFin in magnitude because
the distances to the sun from the body and from the center of
the earth are very nearly equal. However, at pointA the
direction of the gravitational forceFsun is not exactly oppo-
site to the force of inertiaFin . Thus their nonzero resultant,
the tidal forceFA at pointA, is directed toward the earth. Its
magnitude equalsma0b5ma0(r /R)5(GmMsun/R

2)(r /R),
whereb5r /R is the angle between the body and the center
of the earth as seen from the sun. The tidal forceFB at the
opposite pointB equalsFA in magnitude and is also directed
vertically downward to the earth. On the surface of the earth,
the tidal force is directed vertically downward at all places
~forming a circle! where the sun is in the horizon at that
moment.

The distance from the sun to the body at pointZ ~for
which the sun is at the zenith! is smaller than to the center of
the earth. Here the gravitational pull of the sun points exactly

Fig. 1. Sun-induced tide-generating forces at different pointsA, B, Z,
andN.
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opposite to and is somewhat greater than the force of inertia.
Hence, the tidal forceFZ at this point is directed vertically
upward, from the earth toward the sun. Its magnitude,

FZ5G
mMsun

~R2r !2 2ma05ma0F R2

~R2r !2 21G
'ma0

2r

R
5G

mMsun

R2

2r

R
, ~1!

is approximately twice the magnitude of the tidal forces at
pointsA andB. Similarly, at the opposite pointN ~for which
the sun is at its nadir! the force of inertia is greater than the
gravitational pull of the sun, and so the tidal forceFN at point
N is also directed vertically upward from the earth~and from
the sun!. In magnitude,FN approximately equalsFZ .

The expressions for the tidal forces,FA5(GmMsun/R
2)

3(r /R) andFZ given by Eq.~1!, are valid also for the tidal
forces produced on the earth by the moon if we replaceM sun

by the mass of the moon andR by the moon–earth distance.
There is no intrinsic difference between the sun-induced and
moon-induced tide-generating forces. In both cases, the only
important factor is the acceleration of the earth under the
gravitational pull of the celestial body that causes the tides
on the earth, not the orbital velocities of both gravitationally
coupled bodies~the earth and the sun, or the earth and the
moon!.

The tidal force experienced by any object is proportional
to its distancer from the center of the earth and inversely
proportional to the cube of the distanceR to the celestial
body that causes the force, and is proportional to the mass of
the source body. As noted, lunar tide-generating forces on the
earth are more than twice those of the sun~their ratio is
approximately 2.2! because the moon is much closer to the
earth.

III. TIDAL FORCES AT AN ARBITRARY POINT
NEAR THE EARTH

The standard derivation of tidal forces uses the tide-
generating potential~see, for example, Refs. 12 and 13! for
which the mathematics is somewhat simpler. However, to
emphasize the physics underlying the origin of tide-
generating forces, we consider the vector addition of the rel-
evant forces, just as in the elementary treatment of Sec. II. To
obtain a general mathematical expression for the tide-
generating force at an arbitrary pointD over the earth~Fig.
2!, we introduce the radius vectorr of this point measured
from the center of the earth, and also the vectorr s5R1r
measured from the center of the sun,S, whereR is the vector
of the center of the earth from the center of the sun.

The tidal forceFtid experienced by a body of massm at
point D in the noninertial, nonrotating geocentric frame is

the vector sum of its gravitational attraction to the sun,Fsun

52GmMsunr s /r s
3, and the force of inertia,Fin52ma0

5GmMsunR/R3:

Ftid5Fsun1Fin52GmMsunS r s

r s
3 2

R

R3D . ~2!

We expressr s in Eq. ~2! as the vector sumR1r and calcu-
late the square ofr s . We take into account thatr !R and
write

r s
25~R1r !25R212~R"r !1r 2'R2S 112

~R"r !

R2 D . ~3!

To find an approximate expression for 1/r s
3 in Eq. ~2!, we

raise the right-hand part of Eq.~3! to the power (23/2). If
we substitute the resulting value of 1/r s

3 into Eq.~2! for Ftid ,
we obtain:

Ftid'2G
mMsun

R3 F ~R1r !S 12
3~R"r !

R2 D2RG
'2G

mMsun

R3 F r23R
~R"r !

R2 G . ~4!

We note that the main contributions ofFsunandFin to Ftid ,
whose magnitudes are inversely proportional toR2, cancel in
Eq. ~4!. This cancellation corresponds to the aforementioned
state of weightlessness that we experience on the spaceship
Earth with respect to the sun’s gravity. For pointsA andB in
Fig. 1, r is perpendicular toR, and hence the scalar product
~R"r ! is zero. Therefore at these points the tidal force is
directed opposite tor ~that is, vertically downward!, and its
magnitude equalsGmMsun(r /R3). For pointsZ and N, the
tidal force is directed alongr ~that is, vertically upward!, and
its magnitude 2GmMsun(r /R3) is two times greater than at
pointsA andB. We see that at these four points, the general
result given by Eq.~4! agrees with the simpler calculations
of Sec. II.

IV. HORIZONTAL AND VERTICAL COMPONENTS
OF THE TIDAL FORCE

The sun-induced tide-generating forces exerted on the
earth have a quadrupole character: They stretch the earth
along the sun–earth line, and squeeze the earth in the direc-
tions perpendicular to that line. Because of the axial symme-
try with respect to the sun–earth line, the vertical and hori-
zontal components of the tidal force depend only on the
angle u shown in Fig. 2~and on the distancer from the
center of the earth!. The angleu determines the position of
the mass pointm on or near the surface of the earth mea-
sured from this line.

Figure 3 shows how the tidal forces are directed at differ-
ent points near the earth. Because of axial symmetry about
the sun–earth line, Fig. 3 applies to any plane passing
through the sun–earth line.

The horizontal~tangential to the surface! components of
the tidal forces are much more influential on the ocean tides
and on the orbits of earth satellites than are the vertical~ra-
dial! components, which only modify slightly the earth’s
gravitational force. For the horizontal component of the tidal

Fig. 2. For calculation of the tide-generating force at arbitrary pointD.
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force at an arbitrary pointD, whose geocentric position is
determined by the two coordinatesr and u ~in the plane
shown in Fig. 2!, Eq. ~4! yields:

~F tid!hor523G
mMsun

R3 r cosu sinu

523Fsun

r

R
cosu sinu52

3

2
Fsun

r

R
sin 2u, ~5!

whereFsun5GmMsun/R
2 is the gravitational pull of the sun

on the body. The horizontal component of the tidal force is
zero at pointsA and B and at all other points of the plane
orthogonal to the line sun–earth~for which u590°!, as well
as at pointsN and Z ~for which u50° andu5180°!. The
horizontal component of the tidal force has its maximum
value (3/2)(r /R)Fsun5(3/2)(r /R)GmMsun/R

2 at all points
on the earth for whichu545° andu5135°. This maximal
horizontal component of the solar tide-generating force
causes a deviation of the plumb line from the direction of the
earth’s own gravity only by 0.0089.

If we take the scalar product of the right-hand side of Eq.
~4! for Ftid with the unit vectorr /r , we obtain the depen-
dence of the vertical component (F tid)vert of the tidal force on
the angleu betweenR and r :

~F tid!vert5G
mMsun

R3 r ~3 cos2 u21!

5
3

2
G

mMsun

R2

r

R S cos 2u1
1

3D . ~6!

The last term on the right-hand side of Eq.~6! is indepen-
dent of u and is thus independent of time on the spinning
earth. It can therefore be dropped as far as the tides are
concerned. This term in the vertical component of the tidal
force is the same everywhere on the earth~for a given value
of r ! and adds only a tiny constant value to the vertical force
of the earth’s gravity~about ten million times smaller than
mg!. Thus, the vertical and horizontal components of the
tidal force exerted on a body of massm located at a position
determined by angleu and radiusr are given by:

Fvert5~3/2!~r /R!Fsuncos 2u,
~7!Fhor52~3/2!~r /R!Fsunsin 2u,

whereFsun is the total gravitational pull of the sun experi-
enced by the body anywhere on the earth. This representation
of the tide-generating force is especially convenient because
Eq. ~7! defines a tidal force vector whose magnitude (3/2)
3(r /R)Fsun5(3/2)GmMsunr /R3 is independent of the angle
u: The tidal forces at all points that lie at a given distancer

from the earth’s center are equal in magnitude and differ only
in direction.

Equations~5!–~7! also are valid for the tidal forces pro-
duced by the moon, provided we replace the mass of the sun
M sun by the mass of the moonMmoon and the sun–earth
distanceR by the moon–earth distance. In this case the angle
u in Eq. ~7! determines the position of the body relative to
the moon–earth line.

The tide-generating force of the moon,F tidal

5(3/2)GmMmoonr 0 /R3, experienced by a body of mass m
on the surface of the earth~r 0 is the earth’s radius! is very
small compared to its weight—the earth’s force of gravity
Fgrav5mg5GmMearth/r 0

2. If we let the ratioMmoon/Mearth

51/81 and the mean earth–moon distanceR560r 0 ~actually
this distance varies between 57r 0 and 63.7r 0 because of the
elliptical shape of the moon’s orbit!, we obtain

F tidal /Fgrav5~3/2!~Mmoon/Mearth!~r 0 /R!3'8.631028.
~8!

Although the maximal lunar tidal force on the surface of
the earth is only about 1027 of the earth’s gravitational force,
its effect on the ocean water can be considerable because of
its horizontal component, which is orthogonal to the earth’s
gravitational field and varies with time periodically because
of the earth’s axial rotation. The horizontal component shifts
the ocean water around the globe.

V. THE STATIC DISTORTION OF THE WATER
SURFACE

To estimate the static~equilibrium! distortion of the
ocean’s surface due to the tidal forces, we can use the hypo-
thetical situation of a nonrotating planet on which the tide-
generating forces are nearly time-independent. From the
symmetry of tidal forces, Eq.~7!, we can assume that the
distorted surface has an ellipsoidal shape given by

r ~u!5r 01a cos 2u, ~9!

where 2a!r 0 is the difference in the static maximal and
minimal levels at pointsZ andA ~see Fig. 3!. Hence we can
write for the small inclinationa of the water surface with
respect to the horizon:

a5
1

r

dr~u!

du
'2

2a

r 0
sin 2u. ~10!

We see that the water surface is horizontal (a50) at u50
andu590° ~pointsZ andA!. The anglea is maximum and
equals 2a/r 0 at u545° and atu5135°, where the tidal
force is directed horizontally. In equilibrium the distorted
water surface is orthogonal to the plumb line. The plumb line
shows the direction of the vector sum of the earth’s gravity
and the tidal force. A small departure of the plumb line from
the direction of the earth’s gravity is caused by the horizontal
component of the tidal force. Therefore, the anglea equals
the ratio of the horizontal tidal forceFhor to the force of the
earth’s gravity Fgrav5mg. If we equatea52a/r 0 at u
545° to Fhor/Fgrav and take into account that for sun-
induced tides, Fhor/mg5(3/2)(M sun/Mearth)(r 0

3/R3), we
find for the maximal static level difference 2a at pointsZ
andA:

2a5~3/2!r 0~M sun/Mearth!~r 0
3/R3!. ~11!

Fig. 3. Directions of the tidal forces at different equatorial points near the
earth.
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Equation ~11! yields 2a50.24 m. A similar expression is
valid for the static distortion of the ocean surface due to the
lunar tidal force, and yields 2a50.54 m for the moon-
induced static distortion. In Sec. VII the equation for this
static distortion is also derived from the tide-generating po-
tential.

VI. TIDAL FORCES ON THE ROTATING EARTH

In the above we have used a revolving but nonrotating
geocentric reference frame. The origin of this frame moves
in a circle around the sun–earth~moon–earth! center of
mass, but the frame itself does not rotate because the direc-
tions of its axes are fixed relative to the distant stars. That is,
the frame moves translationally in a circle. This reference
frame is convenient for the analysis of a motion of an artifi-
cial satellite. If we ignore the perturbations caused by tidal
forces, the earth satellite traces out a closed elliptical orbit
relative to this reference frame.

To introduce tidal forces on the rotating earth, we must use
a true geocentric frame of reference that takes part in the
daily rotation of the earth. This frame is noninertial, and
hence we should be concerned with the acceleration of its
different points. We can consider the motion of the earth~and
of the geocentric reference frame! as consisting of two com-
ponents. The first is the component considered above,
namely translational motion~revolution without rotation!
about the sun–earth~moon–earth! center of mass. The sec-
ond component is a uniform daily rotation~spin! of the earth
about an axis passing through the center of the earth.

Both these motions of the earth are important in the prob-
lem of tides, but the roles they play are quite different. The
accelerationa0 related to the translational motion is respon-
sible for the origin of the uniform pseudoforce of inertia
Fin52ma0 , whose action on a body on the earth, combined
with the nonuniform gravitational pull of the sun~moon!, is
described by the tidal forceFtid considered previously. We
note again that only the accelerationa0 of this translational
motion is important, not the orbital velocity of the earth.14 To
avoid confusion often encountered in the literature~see, for
example, Ref. 15!, we must be careful with definitions. In
discussing tides, we should be concerned only with those
gravitational and inertial forces that depend on the apparent
position of the celestial body that produces the tide. The
axial rotation of the earth is related to the centripetal accel-
eration and gives rise to centrifugal forces that increase in
proportion to the distance from the earth’s axis. The centrifu-
gal force of the earth’s daily rotation generally is much
greater in magnitude than tidal forces. Because of the cen-
trifugal forces, the equilibrium shape of the earth differs
slightly from an ideal sphere—it is approximately an ellip-
soid of rotation whose equatorial diameter is a bit greater
than the polar diameter~see, for example, Ref. 13!. The cen-
trifugal effect of the earth’s daily rotation causes an equato-
rial bulge, which is the principal departure of the earth from
its spherical shape.16

But we are not concerned here with this constant distortion
of the earth because this distortion is independent of the ap-
parent position of the celestial body that produces the tides.
Therefore, the centripetal acceleration of the axial rotation
adds nothing to tidal forces. However, the daily rotation of
the earth makes tidal forces time-dependent because the pat-
tern of tidal forces on the earth is coupled to the apparent
positions of the sun and moon. A dynamical response of the

oceanic waters on the spinning earth to these time-dependent
forces is the essence of the phenomenon of tides.

Thus, in the problem of tides, expressions for the tide-
generating forcesFhor andFvert in Eq. ~7! are applicable also
to the true geocentric frame of reference, which takes part in
the daily axial rotation of the earth. The system of tidal
forces shown in Fig. 3, being coupled to the apparent posi-
tion of the sun~moon!, rotates rigidly together with the
earth–sun~earth–moon! line. For simplicity, we shall con-
sider the case in which the source celestial body~the sun or
moon! occurs in the equatorial plane of the earth. Although
the system of tidal forces rotates as a whole with the angular
velocity V of the earth’s axial rotation, that is, with a period
of 2p/V, the true period of variation of the tidal forces on the
earth equals half this value (T5p/V) because of the quad-
rupole symmetry of the system of forces~the semidiurnal
tide!. For the sun-induced tidal forces the period equals 12 h.
For the moon-induced tidal forces the period is 12 h 25
min—the difference between the periods is due to the orbital
motion of the moon. If we fix a point on the equator of the
earth, the local tidal force vector executes a uniform rotation
in the vertical plane, making two complete revolutions dur-
ing a day. The simulation clearly shows how the daily rota-
tion of the whole system of tidal forces produces this doubly
fast uniform rotation of the tidal force at a given equatorial
point, as seen by an observer on the spinning earth.10 Be-
cause of this periodic dependence on time, the tidal forces, in
spite of their small magnitude compared even to the centrifu-
gal force of inertia, produce the oceanic tides.

To find analytical expressions for the time dependence of
the tidal forces at a given point in the equatorial plane of the
spinning earth, we substituteu5Vt in Eq. ~7!. This substi-
tution yields the following expressions for the point of the
equator at which the sun culminates~passes through its ze-
nith! at t50:

Fvert~ t !5Ar cos 2Vt,
~12!

Fhor~ t !52Ar sin 2Vt,

where A5(3/2)Fsun/R5(3/2)GmMsun/R
3. At any other

equatorial point of the earth, the tidal force vector also ro-
tates in the vertical plane with angular velocity 2V. That is,
all the vectors at different points rotate synchronously but
with different phases.

VII. THE POTENTIAL FUNCTION FOR TIDAL
FORCES

An approach often used in deriving an expression for the
tidal force is to begin with the potential energy of a body
under the influence of tide-generating forces. This approach
is simpler than that presented above. However, we have cho-
sen the above approach because it does not obscure the un-
derlying physics and consequently may be considered advan-
tageous to physics instructors. Nevertheless, for
completeness, we introduce here the potential function,
U tides(r ,u), and show how it can be used in calculating the
equilibrium shape of the surface of the ocean and the static
distortion of the water under tidal forces.

The components of the force that lie in the equatorial
plane are given in Eq.~7! and are the negative gradients of
the potential functionU tides(r ,u):
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Fvert5Ar cos 2u52]U tides~r ,u!/]r ,
~13!Fhor52Ar sin 2u52~1/r !]U tides~r ,u!/]u.

Therefore, the potential function for the tidal forces can be
written as:

U tides~r ,u!52~1/2!Ar2 cos 2u

52~3/4!~GmMsun/R
3!r 2 cos 2u. ~14!

The restoring forces that limit the tidal distortion of the
water’s surface are due to the earth’s gravity. If the earth
were not rotating relative to the earth–sun line, the static
distortion of the water surface covering the globe would be
the surface of equal total potential:

U~r ,u!5U0~r !1U tides~r ,u!5const, ~15!

where U0(r )5mgr is the spherically symmetric potential
function of the earth’s gravity which yields the radial com-
ponent of the earth’s gravitational force2dU0(r )/dr
52mg. Thus,

U~r ,u!5mgr2~1/2!Ar2 cos 2u. ~16!

In particular, at pointsZ and A ~see Fig. 3! of the water
surface, the values of the total potential function, Eq.~16!,
are equal:U(r Z ,p)5U(r A ,p/2), from whence we obtain

mgrZ2~1/2!ArZ
25mgrA1~1/2!ArA

2 ,
~17!mg~r Z2r A!5~1/2!A~r A

21r Z
2!.

We can use this condition to determine the static equilibrium
distortion under the tidal forces of the otherwise spherical
ocean surface. Let the radii of the distorted water surface at
points Z and A be r Z5r 01a and r A5r 02a, respectively,
wherer 0 is the radius of the undistorted surface. Then 2a is
the static level difference at pointsZ and A in which the
level is maximum and minimum, respectively. Thus, from
Eq. ~17! we have 2mga5(1/2)A(r Z

21r A
2)'Ar0

2, and for 2a
we obtain:

2a5Ar0
2/~2mg!5~3/2!r 0~Fsun/mg!~r 0 /R!. ~18!

We note thatFsun/mg5(M sun/Mearth)(r 0
2/R2), so that the

static distortion of the ocean surface under the sun-induced
tidal forces can also be expressed as:

2a5~3/2!r 0~M sun/Mearth!~r 0
3/R3!. ~19!

This expression is the same as Eq.~11! derived by requiring
that in equilibrium the surface of the ocean be orthogonal to
the vector sum of the earth’s gravitational force and the tidal
force.

VIII. THE NATURAL WAVE AND THE DRIVING
TIDAL FORCES

Most authors oversimplify the problem of tides and con-
sider ~after Newton and Bernoulli! only the so-calledstatic
~or equilibrium! theory of tides, which treats the ocean sur-
face as a liquid ellipsoid stretchedalong the earth–moon
~earth–sun! line, as if this surface were always in equilib-
rium under the earth’s force of gravity and tidal forces pro-
duced by the moon~sun!. In this approach, the tidal bulges
are aligned with the earth–moon~or earth–sun! axis. There-
fore on the spinning earth the moments of high water at a
given location should coincide with the upper and lower cul-

minations of the moon~sun!, that is, when the moon~sun!
passes through its zenith and nadir. Observations do not
agree with this prediction. Instead, almost the opposite is
usually observed: the moments of low tide occur approxi-
mately at the culminations of the moon.

A complete theory of the tides should take into account the
dynamical response of the ocean to the time-dependent gen-
erating forces. The dynamical theory of tides~first suggested
by Laplace and developed by Airy! treats the tides as a
steady-state forced motion~under varying tidal forces! of a
dynamical system~the ocean!.17 Such a theory predicts a
resonant growth of the steady-state amplitude in cases when
the driving period approaches the period of natural oscilla-
tions.

To avoid the complications related to the three-
dimensional character of the problem and to explain the
physical aspect of the dynamical theory using the simplest
possible model, we imagine, following Airy, water in a wide
canal of uniform depth engirdling the entire earth along the
equator. Imagine the water surface in this canal being dis-
torted statically under the tide-generating forces so that two
bulges form on opposites sides of the earth, changing the
shape of the surface from circular to elliptical. If the forces
maintaining this shape suddenly vanish, the earth’s gravity
would make the distorted surface restore its equilibrium, cir-
cular shape. The water would start to flow and the bulges
disappear so that after a time, namely a quarter period, the
water surface would become circular. But because the water
continues to move, after another quarter period the bulges
reappear in new positions showing an elliptical distortion of
the surface along the line perpendicular to the line of the
original distortion. Then the motion repeats itself in reverse.
This motion of water in the circular canal is a gravitational
standing surface wave whose wavelength equals half-
circumference of the globe. Such a mode of oscillation is
characterized by a certain natural period.

The superposition of two such standing waves whose
phases differ byp/2 and whose elliptical axes are separated
by 45° produces a circulating~traveling! wave of constant
elliptical shape and a wavelength equal to half of the earth’s
circumference. The two opposite bulges in the water surface
travel with this wave around the globe preserving their
height and shape.10

An essential point in explaining the steady-state phase
shift between the moments of high tide and the culmination
of the moon~sun! is the relation between the natural period
T0 of this circulating wave and the periodT of the tide-
generating driving forces. It is possible to estimateT0 as the
time taken by the circulating surface wave to travel along
half the globe. In the limiting case of very long waves on the
surface of shallow water (l@h) the speed of wave is deter-
mined by the earth’s gravityg and depthh, and is indepen-
dent of l. From hydrodynamics we know that this speed
equals (gh)1/2 ~see, for example, Ref. 18, p. 405!. We as-
sume that the mean valueh of the ocean depth is 3.5 km.
During a periodT0 , the wave travels half the circumference
of the globepr 0 , and henceT05pr 0 /(gh)1/2'30 h. Thus,
the approximately 12-h driving external periodT is less than
the natural periodT0 of the free oscillation.

An essential point in explaining the steady-state phase
shift between the moments of high tide and the culmination
of the moon~sun! is the relation between the natural period
T0 of this circulating wave and the periodT of the tide-
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generating driving forces. It is possible to estimateT0 as the
time taken by the circulating surface wave to travel along
half the globe. In the limiting case of very long waves on the
surface of shallow water (l@h) the speed of wave is deter-
mined by the earth’s gravity g and depthh, and is indepen-
dent of l. From hydrodynamics we know that this speed
equals (gh)1/2 ~see, for example, Ref. 18, p. 405!. We as-
sume that the mean valueh of the ocean depth is 3.5 km.
During a periodT0 , the wave travels half the circumference
of the globepr 0 , and henceT05pr 0 /(gh)1/2'30 h. Thus,
the approximately 12-h driving external periodT is less than
the natural periodT0 of the free oscillation.

We emphasize that it is the shape of the surface~the wave!
that circulates around the globe,not the water itself. Relative
to the earth, points on the surface of the ocean execute os-
cillatory motions in closed paths that are considerably
stretched horizontally. On the average, the water is stationary
in the geocentric frame.

To obtain the dynamical picture of tides on the rotating
earth, we should use the reference frame that rotates with the
earth. Relative to this frame, the quadrupole system of tide-
generating forces, being coupled to the position of the sun
~moon!, rotates as a whole while the sun~moon! travels
along its apparent daily path around the earth. This rotation
of the forces occurs at an angular velocityV, the angular
velocity of the earth’s daily rotation~or the difference be-
tweenV and the angular velocity of the moon in its orbit for
moon-induced tides!. Such a uniform rigid rotation of the
system of mutually fixed vectors can be represented as a
superposition of two oscillating quadrupole systems of forces
~with a frequencyv52V! that do not rotate and whose axes
make an angle of 45° to one another. At each point one of
these forces oscillates along the radial~vertical! direction,
while the other force—along the tangential~horizontal! di-
rection. The oscillations of these orthogonal components oc-
cur a quarter period out of phase. At any given point in the
equatorial plane, the vector sum of these mutually orthogonal
oscillating forces produces a force of constant magnitude
whose direction rotates uniformly following the apparent
motion of the sun~moon!, but with angular velocityv
52V.10 For different points on the earth, the phases of these
rotating vectors differ.

IX. THE TIDES AS FORCED OSCILLATIONS OF
THE OCEAN

What is really of interest is the steady-state forced oscil-
lation of the ocean surface due to the time-dependent tidal
forces. Each of the two oscillating systems of forces de-
scribed above excites a mode of forced oscillation of the
water in the equatorial canal, specifically the mode of the
same symmetry as is characteristic of the corresponding sys-
tem of driving forces. These modes have elliptical shapes,
much like the natural oscillations considered above, namely,
the elliptical standing waves whose axes make an angle of
45° with one another. Nevertheless, we can consider these
modes to be orthogonal in the sense that their spatial forms
are described by eigenfunctions forming an orthogonal basis
in the function space. The two forced oscillations in this
linear system, each excited by one system of oscillating driv-
ing tidal forces, are independent of one another, and the re-
sulting forced motion is a superposition of these forced os-
cillations.

Any steady-state forced oscillation occurs exactly with the
period of the driving force. The amplitude and phase lag of
the oscillation depend on the amplitude of the driving force,
on the damping factor, and, more importantly, on the relation
between the driving and natural periods. The two systems of
oscillating driving tidal forces are characterized by equal am-
plitudes and frequencies. Also the natural frequencies and
damping factors of both excited modes are equal. Hence both
excited modes also have equal amplitudes and equal phase
delays behind the corresponding driving forces. The super-
position of these modes produces a forced circulating~trav-
eling! elliptical wave that has the same phase relation with
the rotating driving forces as is characteristic of forced os-
cillations in general.

If we ignore friction ~dissipation of mechanical energy in
the excited wave motion!, the forced motion occurs exactly
in phasewith the driving force, provided the driving period
is longer than the natural period. Otherwise the forced mo-
tion occurs in theopposite phasewith respect to the driving
force. For the simplified model of tides in the equatorial
canal of uniform depth~and also for an earth covered every-
where by an ocean of uniform depth!, the natural period of
free oscillation is longer than the 12-h driving period. Thus
the dynamical theory predicts in this case a stationary circu-
lating elliptically shaped wave whose axis~the line of tidal
bulges! is perpendicularto the earth–sun~earth–moon! line.

On the other hand, the natural period of an elastic wave in
the crust of the earth is shorter than the 12-h period of the
tidal forces. Hence, in the frictionless model, bulges in the
earth’s crust are orientedalong the earth–sun~earth–moon!
line. Observations show that the solid body of the earth ac-
tually experiences twice-daily tides with maximum ampli-
tude of about 30 cm whose bulges lag approximately 3°
behind the earth–moon line.17

X. MATHEMATICAL DESCRIPTION OF THE
FORCED OSCILLATIONS

Each of the partial forced oscillations can be described by
a differential equation of a linear oscillator. Letq1(t) be the
normal coordinate describing the first forced oscillation
whose elliptical shape is characterized by a major axis ori-
ented along the earth–sun line~and in the perpendicular di-
rection after a half period!, and letq2(t) be the normal co-
ordinate describing the second oscillation with the axis
inclined 45° to the earth–sun line. A disturbance of the water
surface caused by the first oscillation can be described by
Dr 1(u,t)5q1(t)cos(2u), which gives the small vertical dis-
placement of the surface at an arbitrary point (r 0 ,u) of the
equator. Similarly, the second oscillation causes a distortion
of the surface described byDr 2(u,t)5q2(t)sin(2u). The
forced oscillations experienced by the normal coordinates
q1(t) and q2(t) are periodic~steady-state! partial solutions
of the two differential equations:

q̈112gq̇11v0
2q15v0

2a cosvt,
~20!q̈212gq̇21v0

2q25v0
2a sinvt.

Herev0 is the natural frequency of the corresponding mode
(v052p/T052(gh)1/2/r 0), g is the damping constant,v
52V is the driving frequency, anda is the magnitude of the
equilibrium distortion of the ocean surface under the static
system of tidal forces~that is, the distortion for the planet
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whose axial rotation is synchronized with its orbital revolu-
tion!. The theoretical value of a is given by Eq.~11! or ~18!.
Although the values ofv and a are fairly well known, the
situation is quite different regarding the values ofv0 andg.

In the limiting case of extremely slow rotation of the earth,
the steady-state solution of Eq.~20! is q1(t)5a cosvt,
q2(t)5a sinvt. This solution describes the quasistatic ellip-
tical distortion whose axis follows adiabatically the slowly
rotating earth–sun~earth–moon! line. The major axis of the
ellipse at any moment is oriented along this line. The dis-
placement of the water level from its mean position in the
equatorial plane in this limiting case is given by

Dr ~u,t !5Dr 1~u,t !1Dr 2~u,t !

5q1~ t !cos 2u1q2~ t !sin 2u

5a~cos 2Vt cos 2u1sin 2Vt sin 2u!

5a cos 2~Vt2u!. ~21!

To find the distortion of the water surface for an arbitrary
value ofv, we can use the relevant well-known steady-state
solution to Eq.~20! for the normal coordinatesq1(t) and
q2(t):

q1~ t !5q0 cos~vt2d!, q2~ t !5q0 sin~vt2d!, ~22!

where their common amplitudeq0 and phase lagd are given
by

q05
v0

2a

A~v0
22v2!214g2v2

,

~23!

tand5
2gv

v0
22v2 .

~See, for example, Ref. 18, pp. 372–373.! Therefore the re-
sulting distortion of the water surface under the tidal forces is
given by

Dr ~u,t !5Dr 1~u,t !1Dr 2~u,t !

5q1~ t !cos 2u1q2~ t !sin 2u

5q0@cos~2Vt2d!cos 2u1sin~2Vt2d!sin 2u#

5q0 cos 2~Vt2d/22u!. ~24!

We see from Eq.~24! that at any time t the maximum
~high water! of the tidal wave circulating around the earth is
located at the position defined by the angleumax5Vt2d/2.
That is, the position of the maximum lags behind the sun
~moon! by the angled/2. If g!v, it follows from Eq. ~23!
that this retarding angle is almost zero ifv,v0 . In other
words, the marine tide would be nearly the equilibrium tide
with the high-water time coinciding with culminations of the
sun~moon! if the natural period of the circulating wave were
less than the 12-h driving period~that is, if T0,T!. How-
ever, for our model of the ocean, we estimate the natural
period to be close to 30 h. Therefore the situation corre-
sponds tov.v0 , when the steady-state forced oscillations
occur nearly in the opposite phase relative to the driving
force. In this case the tide should be inverted with respect to
the equilibrium one. The retarding angled/2 approachesp/2
according to Eq.~23!, which means that for a given equato-
rial point, the high water occurs when the sun~moon! is
almost at the horizon~rather than at zenith or nadir!.

At any given place on the equator, it follows from Eq.~24!
that the water level~above the average value! varies with t
according toz(t)5q0 cos(2Vt2d), wheret50 corresponds
to the culmination of the sun~moon! at the place in question.
We can expect that for the model of a water canal of uniform
depth, the value ofq0 given by Eq. ~23! is more or less
reliable because hydrodynamics allows us to estimate the
natural frequencyv052p/T052(gh)1/2/r 0 by using the
known speedn5(gh)1/2 of very long gravitational waves.
However, considerable uncertainty is related to the damping
factor g. If we assume that the damping is small (g!v0),
we can conclude that the orientation of the tidal bulges de-
viates only slightly from the line perpendicular to the sun–
earth~moon–earth! line, but the particular value of this de-
viation remains indefinite.

In the above discussion, we considered only the steady-
state oscillation of the ocean surface~the stationary wave!,
assuming that the transient is already over. For this steady
motion to establish itself, some friction~even if very small!
is necessary. In the problem under consideration, we are con-
cerned with the water motion caused solely by the eternal
tidal forces, and therefore we have had centuries and even
millennia to wait for the fading away of the transient. There-
fore our use of the steady-state solution is appropriate for
tides. We also emphasize that in the dynamical theory of
tides, the driving tide-generating forces are perfectly well
known, so that most uncertainties originate primarily from a
very poor correspondence between the simple model of the
dynamical system and the real oceans of the earth.

XI. REAL-WORLD COMPLICATIONS

The pattern of tide-generating forces is coupled to the po-
sition of the moon~and the sun! with respect to the earth. For
any place on the earth’s surface, the relative position of the
moon has an average periodicity of 24 h 50 min. The lunar
tide-generating force experienced at any location has the
same periodicity. When the moon is in the plane of the equa-
tor, the force runs through two identical cycles within this
time interval because of the quadrupole symmetry of the
global pattern of tidal forces. Consequently, the tidal period
is 12 h 25 min in this case~the period of the semidiurnal
lunar tide!. However, the lunar orbit doesn’t lie in the plane
of the equator, and the moon is alternately to the north and to
the south of the equator. The daily rotation of the earth about
an axis inclined to the lunar orbital plane introduces an
asymmetry in the tides. This asymmetry is apparent as an
inequality of the two successive cycles within 24 h 50 min.

Similarly, the sun causes a semidiurnal solar tide with a
12-h period, and a diurnal solar tide with a 24-h period. In a
complete description of the local variations of the tidal
forces, still other partial tides play a role because of further
inequalities in the orbital motions of the moon and the earth.
In particular, the elliptical shape of the moon’s orbit pro-
duces a 40% difference between the lunar tidal forces at the
perigee and apogee of the orbit. Also the inclination of the
moon’s orbit varies periodically in the interval 18.3° – 28.6°,
causing a partial tide with a period of 18.6 yr. The interfer-
ence of the sun-induced tidal forces with the moon-induced
tidal forces~the lunar forces are about 2.2 times as strong!
causes the regular variation of the tidal range betweenspring
tide, when the range has its maximum~occurring at a new
moon and at a full moon, when the sun and moon are in the
same or in the opposite directions!, andneap tide, when the
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range has its minimum~which occurs at intermediate phases
of the moon!. The amplitude of a spring tide may be 2.7
times the amplitude of a neap tide.

Because the earth is not surrounded by an uninterrupted
water envelope of equal depth, but rather has a very irregular
geographic alternation of land and seas with complex floor
geometry, the actual response of the oceans and seas to the
tidal forces is extremely complex. In enclosures formed by
gulfs and bays, the local tide is generated by an interaction
with the tides of the adjacent open ocean. Such a tide often
takes the form of a running tidal wave that circulates within
the confines of the enclosure. In some nearly enclosed seas,
such as the Mediterranean, Black, and Baltic seas, a steady-
state oscillation in the form of a standing wave, or tidal se-
iche, may be generated by the tidal forces. In these seas, the
tidal range of sea level is only on the order of centimeters. In
the open ocean, it generally is on the order of decimeters.

In bays and adjacent seas, however, the tidal range may be
much greater because the shape of a bay or adjacent sea may
favor the enhancement of the tide inside. In particular, there
may be a resonance response of the basin concerned with the
tide. Tides are most easily observed along seacoasts, where
the amplitudes are exaggerated. When tidal currents run into
the shallow waters of the continental shelf, their rate of ad-
vance is reduced, the energy accumulates in a smaller vol-
ume, and the rise and fall are amplified. The details of tidal
motions in coastal waters, particularly in channels, gulfs, and
estuaries, depend on the details of coastal geometry and
water-depth variation over a complex sea floor. Tidal ampli-
tudes and phase lags, the contrast between spring and neap
tides, and the variation of times of high and low tide all
change widely from place to place.

For the aforementioned reasons, a purely theoretical cal-
culation of the times and heights of tides at a particular lo-
cation is practically impossible. Nevertheless, for a given
place on a coast, the tides can be quite successfully predicted
on the basis of accumulated long-term observations of the
tides at the place concerned. The analysis of the observations
relies on the fact that any tidal pattern in time is a superpo-
sition of variations associated with periodicities in the mo-
tions of the moon and the sun relative to the earth. The
periods involved are the same everywhere on the earth, but
the relative amplitudes and phases of their contributions are
highly variable from one place to another. Observations over
a sufficient time make it possible to calculate which contri-
butions are significant at a particular location and, thus, to
forecast tidal times and heights. It is common that 40 har-
monic components may be significant for practical calcula-
tions at one location.17

XII. THE EVOLUTION OF ORBITAL MOTIONS
AND SPINS OF CELESTIAL BODIES INDUCED BY
TIDAL FORCES

When the forced motion occurs exactly in the same or
opposite phase with respect to the driving force, no energy
exchange occurs on average between the external source and
the oscillatory system. To explain the secular variation~the
retardation! of the earth’s axial rotation under the tidal
forces, we have to take friction into account.

One may wonder why the dissipation of mechanical en-
ergy in the tides has a scale that seems very modest. The
point is that only thewavecirculates around the globe, not
the water itself. The phase lagd of the steady-state forced

oscillation behind the periodic driving force is determined by
Eq. ~23!. For the mode of oscillations in which we are inter-
ested, this phase-frequency characteristic is almost a step
function ~zero forv,v0 , that is, forT.T0 , and2p oth-
erwise!. Only near resonance (v'v0) is this step slightly
smoothed over. Therefore the displacement of the tidal water
bulges from the line perpendicular to the sun–earth~moon–
earth! axis is very small.

However, this displacement, which destroys the symmetry
of the system~Fig. 4!, is absolutely necessary in principle in
order that the driving tidal forces be capable of maintaining
the circulating tidal wave~that is, of preventing it from
damping out!. If the earth is taken as the reference frame, we
can see that by virtue of this phase shift and the correspond-
ing displacement of bulges, the tidal forces exert a retarding
torque relative to the earth’s axis and thus do nonzero net
work on the system. This work compensates for the frictional
losses experienced by the tidal traveling surface wave and
measures the gradual reduction of the mechanical energy of
the system. The energy is provided by the axial rotation
~spin! of the earth. Hence the spin secularly slows down and
the angular momentum of the axial rotation diminishes.

Looking at the whole system from the inertial reference
frame, we should remember that the sun~moon! interacts
with the earth only by its central gravitational force. If the
bulges were oriented exactly along or perpendicularly to the
sun earth~moon–earth! axis, this gravitational force would
not exert a torque on the earth. If we consider the gravita-
tional forcesF1 and F2 ~Fig. 4! exerted on the bulges, we
conclude that the retarding torque about the earth’s axis,
which slows down the axial rotation, is due to the above-
mentioned displacement of the bulges which destroys the
symmetry of the system with respect to the earth–sun
~earth–moon! line.

However, the total torque of the central gravitational field
of the sun~moon! exerted on the earth and the bulges of its
liquid shell, measured relative to the sun~or to the moon for
moon-induced tides!, is zero. Hence the total angular mo-
mentum of the system is conserved, as it should be in any
closed system. The diminishing of the earth’s spin due to
tidal friction means that the orbital momentum of the system
slowly increases during the tidal evolution. The earth’s orbit
gradually expands. The lack of symmetry~produced by tidal
friction! does not influence the conservation of total angular
momentum, although it causes a slow secular redistribution
of the angular momentum between the spin and the orbital
motion. As the orbit expands, the mechanical energy of the
orbital motion also increases. This additional mechanical en-
ergy, as well as the dissipated energy, is borrowed from the
energy of axial rotation.19

This conclusion about expanding the moon’s orbit, derived
from the conservation of angular momentum, is often en-

Fig. 4. Gravitational interaction between the moon and the tidal bulges.
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countered in the literature~see, for example, Ref. 20!. Al-
though quite convincing, it nevertheless leaves the actual
mechanism unexplained. To understand the physical reason
for this phenomenon, it helps to take the forces into account.
If we consider the properties of the gravitational forcesF18
and F28 ~see Fig. 4! that are exerted on the moon by the
earth’s tidal bulges and their influence on the orbital motion,
we draw attention to a subtle peculiarity that deserves dis-
cussion. While the orbit expands, the orbital velocity of the
moon diminishes. However, from the asymmetry in the con-
figuration that is responsible for the evolution, we can con-
clude that the resultant gravitational force exerted on the
moon by the tidal bulges is directedforward, in the direction
of the orbital motion. How can this accelerating force slow
down the orbital motion? All authors who write about tidal
evolution leave this question unanswered.

This situation is similar to the widely known paradox of
an earth satellite in a circular orbit that gradually descends in
the rarified upper atmosphere: Intuitively we expect that the
weak atmospheric drag should slow down the satellite, but
instead, the satellite gains speed as its orbit gradually de-
creases. Because of air resistance, the satellite is accelerated
in the direction of its motion, as if the retarding force of air
resistance were pushing the satellite forward. An explanation
of this so-called aerodynamical paradox of the satellite can
be found in Ref. 21.

To understand the slowing down of the moon during tidal
evolution, we must take into account that the moon gradually
spirals away from the earth and its orbit spreads out, so that
the actual motion of the moon occurs along an expanding
spiral. A portion of this trajectory~with a strongly exagger-
ated expansion! is shown schematically in Fig. 5. Because of
this expansion, the perpendicular to the trajectory is directed
not to the center of the earth but rather slightly in front of the
center. Therefore the main gravitational pullF exerted on the
moon by the earth has a retarding tangential componentFt
directed back along the trajectory. This component is greater
in magnitude than the forward-directed tangential component
of F18 andF28 ~see Fig. 4! that are exerted on the moon by the
tidal bulges~this component is not shown in Fig. 5!. Hence
the total tangential acceleration of the moon is directed
against the velocity.

Generally, in order to explain tidal evolution, that is, the
reduction of spin and the secular variation of the orbits of

gravitationally coupled celestial bodies, it is necessary to
take into account both the dynamic distortion of the spherical
shape of the body~and of its liquid shell, if any! under the
tidal forces, and the additional displacement of the bulges
caused by tidal friction. The nonuniform gravitational field
of one body in an orbit about another distorts the shape of
the second. The dissipation of energy stored in the resultant
tidal distortions leads to a coupling that causes secular
changes in the orbit and in the spins of both bodies. Retar-
dation of the axial rotation and evolution of the orbit will
continue until the axial rotation is synchronous with the
mean orbital revolution.

This effect is vital to an understanding of the history of the
earth and moon. That the moon always keeps the same face
turned toward the earth is attributed to the past effects of
tidal friction in the moon. The dissipation of tidal energy on
the earth results in a slowing of the earth’s axial rotation
while the moon’s orbit is gradually expanding. Both the cur-
rently observed increase in the length of the day of 0.0016
s/century and the recession of the moon of 3 to 4 cm/yr are
understood as consequences of the tides raised by the moon
on the earth. Billions of years from now the moon will be so
far from the earth that the duration of the month will be
equal to the duration of the day. The tidal evolution of the
system ends with synchronization of the axial rotation of
both orbiting bodies with their orbital revolution. The length
of both the day and month in this final state of coherent
rotation will be approximately 50 present days, as can be
calculated on the basis of angular-momentum conservation
~see, for example, Ref. 13!. Similarly, tidal effects on the
earth influence its axial rotation and its orbital revolution
around the sun.22

Tidal dissipation accounts for the current states of axial
rotation of several planets, the spin states of most of the
planetary satellites, and the spins and orbits of close binary
stars. For example, all the major and close planetary satel-
lites in the solar system~with the exception of Saturn’s sat-
ellite Hyperon! are observed to be rotating synchronously
with their orbital motion. The distant planet Pluto and its
satellite Charon are the pair in the solar system that has al-
most certainly reached the end point where further tidal evo-
lution has ceased. In this state the orbit is circular, with both
bodies rotating synchronously with the orbital motion and
both spin axes perpendicular to the orbital plane. Similarly,
many close binary stars are observed to have circular orbits
and synchronized spins, providing numerous examples of
evolution under tidal forces elsewhere in the Milky Way. The
role of tides in the cosmogony was first recognized by the
astronomer George Darwin, who developed a theory of the
heavenly evolution under tidal friction.23

Another interesting manifestation of the tidal forces is the
Roche limit, the minimum distance to which a large~natural!
satellite can approach its primary body without being torn
apart by tidal forces. To evaluate this critical distanceRc , we
can equate the vertical tidal force, Eq.~6!, exerted on a mass
point located atu50 or u5p on the surface of a satellite of
radiusr sat and massmsat by its primary of massM , and the
force of self-gravitation of the satellite~that is, the force of
gravitational attraction of this mass pointm to the satellite!:

2
GmM

Rc
3 r sat5

Gmmsat

r sat
2 ,

whence

Fig. 5. The main~central! gravitational pull of the earth exerted on the
moon.
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Rc5r satA3
2M

msat
5r planetA3

2r

rsat
. ~25!

In Eq. ~25! r planet is the radius of the primary,r is its mean
density, andrsat is the satellite’s mean density. If the satellite
and its primary are of similar composition (r'rsat), the the-
oretical limit is about 21/351.26 times the radius of the
larger body. The famous rings of Saturn lie inside Saturn’s
Roche limit and may be the debris of a demolished moon.
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