On the dynamic stabilization of an inverted pendulum
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A simple qualitative physical explanation is suggested for the phenomenon of dynamic stabilization
of the inverted rigid planar pendulum whose pivot is constrained to oscillate with a high frequency

in the vertical direction. A quantitative theory based on the suggested approach is developed. A
computer program simulating the physical system supports the analytical investigation. The
simulation reveals subtle details of the motion and aids the analytical study of the subject in a
manner that is mutually reinforcing. @001 American Association of Physics Teachers.

[DOI: 10.1119/1.1365403

[. INTRODUCTION: THE PHYSICAL SYSTEM Another possible kind of regular motion is a synchronized
nonuniform unidirectional rotation in a full circle with a pe-
An ordinary rigid planar pendulum suspended in the uni-riod that equals either the period of the constrained motion of
form gravitational field is a very useful and versatile physicalthe axis or an integer multiple of this period. More compli-
model famous first of all for its outstanding role in the his- cated regular modes of the parametrically forced pendulum
tory of physics. The pendulum is also interesting as a paraare formed by combined rotational and oscillating motions
digm of contemporary nonlinear physics and, more impor-synchronizedlocked in phasgewith oscillations of the pivot.
tantly, because the differential equation of the pendulum iDifferent competing modes can coexist at the same values of
frequently encountered in various branches of modern phyghe driving amplitude and frequency. Which mode is acti-
ics. For example, the mathematical relationships associatedited depends on the starting conditions.
with the limiting motion of a frictionless pendulum, i.e., the  The behavior of the pendulum whose axis is forced to
motion with the total energy that equals the potential energyscillate with a frequency from a certain interand with
in the inverted positiorithis motion delimits swinging from large enough amplitudecan be irregular, chaotic. The pen-
rotation in a full circle, see, e.g., Ref),Iplay an important dulum makes several revolutions in one direction, then
role in the theory of solitons, in the problem of super-swings for a while with permanently changing amplitude,
radiation in quantum optics, and in the theory of Josephsothen rotates again in the former or in the opposite direction,
effects in weak superconductivity. Thus, the pendulum is and so forth. For other values of the driving frequency and/or
rather simple classic nonlinear mechanical device whictamplitude, the chaotic motion can be purely oscillatory,
models many physical systems. Mechanical analogies can lthout revolutions. The pendulum can make, say, one oscil-
very useful in gaining an intuitive understanding of complexlation during each of two driving periods, but in each next
phenomena. cycle the motion(the phase orbijtis slightly (and randomly
Various kinds of motion of the pendulum whose axis isdifferent from the previous cycle. At first sight such essen-
driven periodically in the vertical direction are of special tially unpredictable, random behavior contradicts the well-
interest. Depending on the frequency and amplitude of thiknown uniqueness of solution to a differential equation of
constrained oscillation of the suspension point, this seemmotion with given initial conditions. Within the scope of
ingly simple system exhibits a rich variety of nonlinear phe-classical mechanics which naturally includes the concept of
nomena characterized by amazingly different types of momechanical determinism, chaotic behavior of simple dynami-
tion. Some modes of such a parametrically forced penduluncal systems is considered admissible only as a result of ex-
are quite simple indeed and agree well with our intuition,ternal random perturbations of the system, i.e., as something
while others are very complicated and counterintuitive. introduced from the outside, from the environment. The dis-
When the external frequency is approximately twice thecovery of random behavior and intrinsic irregular, chaotic
natural frequency of the pendulum, the lower state of equioscillations in deterministic dynamical systems of different
librium becomes unstable, and the system leaves it, executature (physical, chemical, biologicplis one of the most
ing oscillations whose amplitude increases progressivelyprominent recent scientific sensations. It is remarkable that
provided the driving amplitude exceeds some thresholduch a simple mechanical system as a pendulum whose pivot
value. This phenomenon is called parametric resonance. lis forced to oscillate regularly can exhibit under some con-
contrast to the case of ordinary resonance caused by a direditions a chaotic behavior, illustrated by a strange attractor in
influence of some periodic external force, over the thresholdhe phase plane. Chaotic modes of the parametrically driven
friction is unable to restrict the growth of parametrically ex- pendulum have been intensively investigated over the past
cited oscillations. The growth of the amplitude is restricteddecade$:’
because the period of natural oscillations increases with the Another well-known interesting feature in the behavior of
amplitude due to nonlinear properties of the pendulum: The rigid pendulum whose suspension point is constrained to
resonance conditions, being fulfilled for small amplitudes,vibrate with a high frequency along the vertical line is the
become violated as the amplitude increases. Parametric resdynamic stabilization of its inverted position. When the fre-
nance is possible when two driving cycles occur during apquency and/or the amplitude of these vibrations are large
proximately one, two, three, and any other integer number oénough(the necessary conditions are determined in the fol-
natural periods. With increasing friction, parametric reso-lowing), the inverted pendulum shows no tendency to turn
nances of higher orders become weaker and disappear. down. Moreover, at small and moderate deviations from the
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vertical inverted position the pendulum tends to return to ittudes of the pivot is closely related to the commonly known
Being deviated, it can execute relatively slow oscillationsconditions of parametric instability of the noninverted pen-
about the vertical line on the background of rapid oscillationsdulum.

of the suspension point. An example of the graphs of such

oxclaons f e vertd penduln oblaed 1 he COM', pHYSICAL REASONS FOR STABILITY OF THE

how the rapid vibrations superimpose on the slow oscillatior“\l\/ERTED PENDULUM WHOSE PIVOT IS

and distort its smooth shape. In the presence of friction thesg SCILLATING AT HIGH FREQUENCY

slow oscillations gradually damp away, and the pendulum o simplicity we consider a light rigid rod of lengtiwith
eventually comes to the vertical inverted position. a heavy small bob of mass on its end and assume that the
This type of dynamic stability probably was first pointed 144 has zero mass, so that all the mass of the pendulum is
out by Stephenson almost a century 49n.1951 such ex-  concentrated in the bob. The force of graving provides a
traordinary behavior of the pendulum was explained and ingestoring torque-mglsing whose value is proportional to
vestigated gxpenmentally n deFall by Pjotr Kap@zand' the the sine of angular deflectioa of the pendulum from the
cprres[?ond[ng Physmal dewfze IS now widely known In R'“'S'equilibrium position. With the suspension point at rest, this
sia as “Kapitza's pendulum.” Simple hand-made devices argq ;o makes the deviated pendulum swing about the lower
often used to show in lectures this fascinating phenomenop; o equilibrium position. When the axis of the pendulum

of classical mechanics. An old electric shaver's mechamsnﬂs constrained to move with acceleration along the vertical

can serve perfectly well to force the pivot of a light rigid | "t i convenient to analyze the motion in the noninertial
pendulum vibrating with a high enough frequency and suffi-

) . ; = © ere is one more force exerted on the pendulum, namely the
kind of bedeerme_nt, perplexmg _and even astonishing thos?orce of inertia—mz wherez(t) is the time-dependent ver-
students who see it for the first time. . . : :

tical coordinate of the axis. The torque of this force

After Kapitza, this simple but very curious and intriguing oy S
system attracted the attention of many researchers, and t_emz' sing must be added to the torque of the gravitational

theory of the phenomenon may seem to be well elaboratetf'C€: . .
(see, e.g., Ref. 20 Nevertheless, more and more new fea- Let the axis of the pendulum be forced to execute a given

tures in the behavior of this apparently inexhaustible systeri@'monic oscillation along the vertical line with a frequency
are reported regularly. Many related papers have been pul$ Qnd an amplltudca, i.e., let the constrained motion of the
lished in recent years in the American Journal of@XiS be described by
Physicsi*~*° z(t)=asinot. 1)
However, in the abundant literature on the subjectast . . .
bibliography can be found in Ref. 2the author failed to _ TNhe force of inertiaF;,(t) exerted on the bob in the non-
discover a simple and clear interpretation of this interestingnertial frame of reference also has a sinusoidal dependence
phenomenon. Understanding the dynamic stabilization of aRn time:
inverted pendulum is certainly a challenge to our intuition.  F. (t)= —mzt)=maw?sinwt. 2)
The principal aim of this paper is to present a quite simple ) L i ,
qualitative physical explanation of the phenomenon. We fo- This force of |'nert|a is dwgcted dovynward during thg t|.me
cus also on an approximate quantitative theieading to  intervals for whichz(t)=asinet <0, i.e. when the axis is
the well-known Concept of the effective potentia| for the below the middle point of its oscillations. We see this di-
slow motion of the penduluinwhich can be developed on rectly from the equation foF,(t), Eg.(2), whose right-hand
the basis of the suggested approach to the problem. Finallgjde depends on time as st that is, exactly as the coor-
we show that the loss of dynamic stability at large ampli-dinate of the axigsee Eq.1)]. Therefore during the corre-
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pendicularly to the direction of oscillationsorresponds to a
dynamic equilibrium positiofan unstable one, as we shall
see later.
Now let us consider the case in which on average the rod
is deflected through an arbitrary angjefrom the direction
of oscillations, and the axis oscillates between extreme
points 1 and 2, as shown in the upper part of Fig) 2In the
noninertial frame of reference associated with the oscillating
axis, the bob moves at these oscillations between points 1
and 2 in the lower part of Fig.(B) along an arc of a circle
whose center coincides with the aXisof the pendulum. We
note that the rod has the same simultaneous orientations in
Fig. 2. The forces of inertia exerted on the pendulum in the noninertialpoth reference frames at instant 1 as well as at instant 2.
reference frame at the extreme positions 1 and 2 of the oscillatingfaxis  \\/hen the axis is displaced downwatd position 1 from its
midpoint, the force of inertid-; exerted on the bob is also
directed downward. In the other extreme position 2 the force
sponding half-period of the oscillation of the pivot, this ad- of inertiaF, has an equal magnitude and is directed upward.
ditional force is equivalent to some strengthening of theHowever, now the torque of the force of inertia in position 2
force of gravity. During the other half-period the axis is is greater than in position 1 because #ren of the force in
above its middle positionz(t) =a sinwt>0), and the action this position is greater. Therefore on average the force of
of this additional force is equivalent to some weakening ofinertia creates a torque about the axis that tends to turn the
the gravitational force. When the frequency and/or amplitudgpendulum upward, into the vertical inverted position, in
of the pivot are large enouglwvhen aw?> g), for some part which the rod is parallel to the direction of oscillations. Cer-
of the period the apparent gravity is even directed upward. tainly, if the pendulum makes an acute angle with respect to
On the basis of this approach, taking into account the pethe downward vertical position, the mean torque of the force
riodic variations of the apparent gravity, we can easily ex-Of inertia tends to turn the pendulum downward.
plain, say, the physical reason for the ordinary parametric Thus, the torque of the force of inertia, averaged over a
swinging of the pendulum when its pivot is driven vertically period of oscillations, tends to align the pendulum along the
with a frequency approximately twice the frequency of natu-direction of constrained oscillations of the axis. The right-
ral oscillations. hand side(b) of Fig. 2 presents an utterly simple and clear
In the case of rapid oscillations of the axis, the mean valu@xplanation to the origin of this torque. Kapitzealled this
of the force of inertia, averaged over the short period of thes¢éorquevibrational, but we can also call inertial, because its
oscillations, is zero, but the value of iisrqueaveraged over origin is related to the force of inertia that arises due to the
the period about the axis is not zero. Next we show whyconstrained rapid vibrations of the axis. For given values of
This nonzero mean torque of the force of inertia explains théhe driving frequency and amplitude, this torque depends
pendulum stabilization in the inverted position. only on the angle of the pendulum’s deflection from the di-
Let us begin with the case in which the rod of the pendu-tection of the pivot's vibration. This mean inertial torque
lum is oriented horizontally, i.e., at the right angte= w/2to ~ does not depend on time explicitly, and its influence on the
the direction of oscillations of the ax[&ig. 2@)]. pendulum can be considered exactly in the same way as the
To better understand the influence of the force of inertidnfluence of other ordinary external torques, such as the
upon the system, we first forget for a while about the force oforque of the gravitational force. The inertial torque gives the
gravity. (Explaining the phenomenon in lectures, it is pos_deswed explanaﬂon_fo_r the phy§|cal reason of existence of
the orientation of the vibrating device mentioned earlier, sgWo preferable orientations of the pendulum’s rod along the
that the pendulum’s axis of rotation is vertical. Then the rigiddirection of the pivot's vibration. With gravity, the inverted
pendulum occurs in a state of indifferent equilibrium at anyPendulum is stable with respect to small deviations from this
orientation in the horizontal plane until the axis is vibrating. Position provided the mean torque of the force of inertia is
If the bob has zero initial velocity, in the inertial reference greater than the torque of the force of gravity.
frame in the absence of gravity it stays practically at the
same level while the axié oscillates between the extreme || AN APPROXIMATE QUANTITATIVE THEORY
points 1 and 2 anq the rod turns down qnd up through asmal\- 1= INVERTED PENDULUM
angle, as shown in the upper part of Figa)2 In the nonin-
ertial frame of reference associated with the oscillating axis, Now we can determine the quantitative conditions, which
the same motion of the rod is shown in the lower part of Fig.provide the dynamic stabilization of the inverted equilibrium
2(a): The bob of the pendulum moves up and down along arposition in the presence of the force of gravity. Rapid verti-
arc of a circle and occurs in positions 1 anftt2e lower part  cal vibrations of the axis make the inverted position stable if
of Fig. 2a)] at the instants at which the oscillating axis at small deflections from this position the torque of the force
reaches its extreme positions 1 and 2, respectitBly upper  of inertia, averaged over the period of rapid oscillaticthss
part of Fig. 2a)]. In position 1 the force of inerti&, exerted  torque tends to return the pendulum to the inverted position
on the bob is directed downward, and in position 2 the forcéds greater in magnitude than the torque of the gravitational
F, of the same magnitude is directed upward. The arm of théorce that tends to tip the pendulum down.
force in positions 1 and 2 is the same, therefore the torque of We can consider the motion of the pendulum whose axis
this force, averaged over the period of oscillations, is zero. Ins vibrating with a high frequency as a superposition of two
the absence of gravity this orientation of the pendulper- components: a “slow” or “smooth” component, whose
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variation during a period of constrained vibrations is small,by Eq.(2) and of §(t) whose value determines the oscillating
and a “fast” (or “vibrational”) component. Let's imagine arm of this force:
an observer who doesn’t noti¢er doesn’t want to notige . . .
the vibrational component of this compound motion. If this {Fin(D)1 Sin(¢+8))= —maw?l(a/l)cosy siny(sir? wt)
observer uses, for example, a stroboscopic illumination with = — Ima2w? cosy sin i, 6)
a short interval between the flashes that equals the period of
constrained vibrations of the pendulum’s axis, he/she can sdeecause the average value of the sine squared equals 1/2:
only the slow component of the motion. Our principal inter- {Si wt)=1/2. Fory> /2 the average value of the torque of
est is to determine this slow component. the force of inertia is positive: If the pendulum makes an
When the rod of the pendulum is deflected from the down-acute angle with the upward vertical direction, this torque
ward vertical position on the average through an amgldne  tends to turn the pendulum up. Comparing the right-hand
instantaneous valug(t) of the deflection angle is subjected sides of Eqs(5) and(6), we see that the torque of the force
to an additional rapid almost sinusoidal oscillation with theof inertia can exceed in magnitude the torque of the gravita-
frequencyw about this average valug=(¢(t)) because of tional force tending to tip the pendulum down, when the
the constrained oscillation of the axis. This can be clearlyfollowing condition is fulfilled:
seen from the plots of the angular deflection and velocity  52,,2> 24 7
(Fig. 1). Therefore we can try to search for the instantaneous ) N _ i
angle of deflectiorp(t) as the sum of a slowly varying func-  Thus, the inverted position of the pendulum is stable if the
tion ¢(t) =(¢(t)) and a fast terms(t) whose mean value is Maximal velocitywa of the vibrating axis is greater than the
zero. This additional anglé(t) oscillates with the high fre- Velocity y2gl attained by a body during a free fall from the
quencyw with an amplitude proportional to the sine of the height that equals the pendulum lengtiWe can write this

momentary value ofy(t): criterion of stability in another form, using the expression
wSzg/I for the frequencyw, of small natural oscillations of
z(t) . the pendulum in the absence of forced vibrations of the axis.
e(O=¢(O)+ (1) = (1) =~ ——siny Substitutingg=1 w3 in Eq. (7) we get
a a w
= (1)~ ysinysinot. 3 Tw—0>‘/7- )

According to Eq.(8), the product of the dimensionless
normalized amplitude of forced oscillations of the azid
and the dimensionlegsormalized frequency of these oscil-
lations w/ wg Must exceed the square root of 2. For instance,
for the pendulum whose length=20cm and the frequency
of forced oscillations of the axit= w/27=100Hz, the am-
plitude a must be greater than 3.2 mm. To provide the dy-
namic stabilization of the inverted pendulum within some
finite interval of the angles of deflection from the vertical
| position, the product of the normalized amplitude of forced
g . ; oscillations of the axis and the normalized frequency must be
deviations of t_he momentary deflection angidrom Its av- greater than/2 by a finite value. For a physical pendulum,
erage valu_ap (i.e., 5(t)<1 for a_ll v, and so f_or the sine of the condition of dynamic stability in the inverted position is
the deflgctlpn angle we can write the following approxmateexpressed by the same equati@nor (8) provided we imply
expression. by the quantityl the reduced length of the penduluitmd,
IS i wherel is the moment of inertia with respect to the axis of
sing=sin(y+ &)=siny+ 5cosy. @ rotation,mis the mass, and s the distance between the axis
With the help of this equation, we can find the approxi-and the center of mass. We note that the crite@ror (8) is
mate value of the gravitational torque about the point ofindependent of friction. o
suspensiorfabout the axis of the pendulymaveraged over The critical minimum value of the product of the driving
the period of rapid oscillations of the axis: amplitude and frequencgo found above, Eq(8), agrees
with the lower boundary of stability of the inverted pendu-
(=mglsing)=—mgksin(¢+5))=—mglsing, (5) lum obtained by approximating the exact nonlinear equation
of motion by the Mathieu equation, the solutions of which
because the average valuedff) is zero:(6(t))=0. We see  are widely documented in the extensive literature concerning
that the mean torque of the gravitational force is the same a$e problem(see, e.g., Ref. 11, 12, or 13However, the
in the case of a pendulum with the immovable suspensioinvestigation based on the Mathieu equation and infinite
point: The oscillating second term in the expansion for theHill's determinants gives little physical insight into the prob-
momentary angle, Eq4), being multiplied by a constant lem and, more importantly, is restricted to motion within
gravitational force, gives no contribution to the mean torquesmall angles from the vertical. On the contrary, the above
However, when we take the time average for the torque oéxplanation clearly shows the physical reason for the dy-
the oscillating force of inertia, the first term in the expansionnamic stabilization of the inverted pendulum and is free from
(4) vanishes, but the oscillating second term gives a nonzerthe restriction of small angles.
contribution. This occurs by virtue of the identical sinusoidal In particular, on the basis of the approach developed in
dependence on time both of the force of ineRig(t) given  this paper, for given values of the frequencynd amplitude

Herea is the amplitude of forced vibrations of the axis dnd
is the length of the pendulunfWhen the axis is over its
middle position,z is positive and the additional anglé
= —(z/l)siny is negative, ifyy>0.) Later on we shall find
the differential equation for this unknown slowly varying
function ¢(t) that describes the smooth motion of the pen-
dulum, averaged over the period of rapid oscillations.

The torque of the force of inertia depends on the momen
tary value of this forcanaw? sinwt, Eq.(2), and on the sine
of the anglep. The oscillations of the axis cause only smal

4 Am. J. Phys., Vol. 69, No. 6, June 2001 Eugene I. Butikov 4



35.0 T /\/\
] ' B
X AN ()
0
\)\ / \ .
N
550 "~ / \/\f :
0 2 4 6 8 10 12 14 16 Fig. 3. The graphs of oscillations of the pendulum
(quality Q - 15, axis frequency 14@,, axis ampl. 0.15/, initial defl. 20 degr., init. ang. velocity 0.0) about the lower and upper equilibrium positions, re-
spectively. The graphs are obtained by a numerical in-
25.0 /\/\/\/\ ; : : /\/\ tegration of the exact diﬁerential equation for the mo-
S ; 7-p(1) mentary angular deflectioa(t), Eq. (11).
20 : /
0 \)\_I
N A~/
-25.0 w
0 2 4 6 8 10 12 14 16

(quality Q -15, axis frequency 14 @,, axis ampl. 0.15/, initial defl. 170.0 degr., init. ang. velocity 0.0)

a of forced oscillations of the axis, we can find the maximal If we put wy=0 into these formulas, we get the expression
admissible angular deflection from the inverted vertical po- = a/(1v2)w for the frequency of small slow oscillations
SitioNn Omax=7— i for which the pendulum will return to this  of the pendulum with vibrating axis in the absence of the
position, even wherd,,,, is almost as large as/2. To do  gravitational force. These oscillations can occur about either
this, we should equate the right-hand sides of Efsand  of the two equivalent stable equilibrium positions located
(6) that determine the average values of the torque of thepposite one another along the direction of forced vibrations
gravitational force which tends to tip the pendulum downof the axis. For vertical vibrations of the axis in the field of
and of the torque of the force of inertia which tends to returngravity, the force of gravity increases the average restoring
the pendulum to the inverted position: torque of the force of inertiGand consequently the frequency

of slow oscillation$ about the lower equilibrium position,

and the force of gravity decreases the average restoring
9 torque (and hence the frequency of slow oscillatipa®out

the upper equilibrium position. We can illustrate these results

This expression for an admissible angular excursion fronfonceming the periods of slow oscillations about the two
the inverted equilibrium position is valid for arbitrarily large Vertical positions with the graphs in Fig. 3, obtained in a
values ofé. The greater the product of the frequency and theSimulation experiment on the computer.

amplitudewa of constrained vibrations of the axis, the closer _1h€ Simulation is based on a numerical integration of the
the anglef, ., to 2. Being deflected from the vertical po- exact differential equation for the momentary angular deflec-

sfion by an angle tat does ot excots, the pendulum 17 £10, T Sstor o, hesie 1 e of e
will execute relatively slow oscillations about this inverted eriod v%lue gf the toraue exerted on theg endulum by the
position. This slow motion occurs both under the mearp d b y

torque of the force of inertia and the force of gravity. Rapidforce of inertia that depends explicitly on tine
oscillations with the frequency of forced vibrations of the
axis superimpose on this slow motion of the pendulum. With
friction, the slow motion gradually damps, and the pendulum
wobbles up settling eventually in the inverted position.
Similar behavior of the pendulum can be observed when it The second term takes into account the braking frictional
is deflected from the lower vertical position. But in this casetorque, assumed to be proportional to the momentary angular
the frequency of slow oscillations is greater than for the in-yelocity ¢ in the mathematical model of the simulated sys-
verted pendulum. Indeed, for the hanging down pendulumem. The damping constantis related to the dimensionless
the averaged torque of the force of inertia tends to return thguality factorQ characterizing the role of viscous friction:
pendulum to the lower vertical position together with theszO/Zy.
torque of the gravitational force. Therefore the frequency of " |t js worth mentioning that the results of this section con-
these slow oscillations is greater than both the frequency oferning the smooth behavior of the pendulum with a rapidly
slow oscillations in the absence of gravity and the frequencyjiprating axis are found without the differential equation for
of natgral oscnlat|ons.|n the absence of forced vibrations ofhe system under consideration. Being obtained by a decom-
the axis. The clock with a pendulum subjected to a fast verposition of motion on slow oscillations and rapid vibrations
wyp and wgon Of small slow oscillations about the inverted yalid when the amplitude of constrained vibration of the axis
position and the lower vertical position are given by is small compared to the pendulum’s length<{!). More-
over, in the presence of gravity the driving frequency must
be much greater than the frequency of small natural oscilla-
tions of the pendulumd¢> wy). These restrictions mean that

291 2

7] = — l// =——F=2 0 |
Cos COos
max 0 az 2

w a

aw’ _
1———2$Inwt)SIngo=0. (11

.. . 2
P+2y¢+wg |
o

2 2 2, 2
2 _a w Y 2 _a w N 2 (10)
Wyp= 2|2 W, Wgown™ 2|7 Wo-
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Omax Uuw) Brnax potential consists of two partsy (1) andUj,(¢) describing
the influence of the force of gravity and the force of inertia,

Us . respectively:
> : I 4 U()=Ugl#)+Upn(9)

Up =mgl(1—cosy)+ imatw?(1—cos 2)). (13

The graphs ofUy(¢) and Uj,(¢) are shown in Fig. 4.
They both have a sinusoidal shape, but the period;gfy)
-T -Y— —m/2 0 A % is just one half of the period dfl (). Their minima aty
=0 coincide, thus generating the principal minimum of the
nergy Uy the fld of th. foroe of nera, and of he wota potental (012 POtential fUnction) () =Uig(y). This minimum corre-
gyUin , ilibri iti -
energyU () for the pendulum with an oscillating axis. Zﬂfunrgs tB?,I tt ht?]eStﬁgi Ir%\:\é?ri;]l(jr(ilu'ggr::(ﬂ) pi(;SIltcl)%r;tZ; tgf wpen
=, whereUy(#) has its maximum corresponding to the
) inverted position of the pendulum.
we should not expect from the approach discussed here 10 it criterion (7) or (8) is fulfilled, the amplitude ol ()
give an exhaustive description of the parametrically driveng greater than that ofl (). Then the potential function

pendulum in all cases. . o - _
In particular, within certain ranges of the system param-U(‘ﬂ) has (in addition to the absolute minimum at=0

eters(in the intervals of parametric instabilitghe lower po- which corresponds to the lower equilibrium positicalative

te A bo! c e
sition of the pendulum becomes unstable, as we alread Inima at = x . Bo_th additional minima Co”‘?SPF’”d to
mentioned earlier. However, parametric resonance, as well 486 S8me inverted position of the pendulum. Oscillations of a

the modes of chaotic behavior, occurs at such driving frepart_icle trapp_ed in an additional minimum descyibg the be-
quencies(for the principal parametric resonance~2aw) havior of the inverted pendulum. Slow small oscillations oc-

: L L curring near the bottom of a potential well are almost har-
that do not satisfy the conditions of applicability of the ap- . . .
proach used abg\//e. Therefore we ca?w?wot reqzire from fhirsnonlc. The slopes of the shallow add|t|9nq| potential wells
approach an explanation of chaotic modes and parametrﬁ:re hot as steep as the slopes of the prmu_pal_wauaﬂ.
instability of the noninverted pendulum. This approach pre-! herefore the frequenay,,, of slow small oscillations about
dicts well the lower bound of the stability of the inverted the inverted position is smaller than the frequemgy,, of
pendulum, but does not yield the upper bound, which issmall oscillations within the principal we{about the lower

closely related to ordinary parametric resonance of the non\ertical position, in accordance with the expressions ob-
inverted pendulungsee Sec. V). tained earlier(10) and with the simulations represented by

the graphs in Fig. 3. Certainly, some subtle details in the

motion of the pendulum revealed by the simulations are lost
IV. EFFECTIVE POTENTIAL FUNCTION FOR A in our approximate _analyg,is, which (efers only to the slovy
PENDULUM WITH THE AXIS VIBRATING comlpo_nenltI of the tlnvelstlgfatgdt mo'u?n. .Ne.velrt?el?ss, th|fs

analysis allows us to clearly interpret principal features o
AT HIGH FREQUENCY the physical system under consideration.

The approximate differential equation for the slow motion _The maxima of the total potential energ)(y) are deter-
of the pendulum can be written under the assumption that thglined by Eq.(9). The tops of the potential barrier between
angular acceleratiofi(t) in this slow motion is determined the two W?”S oceur at deflections o (yo>/2) from the
by the mean torquél(y) exerted on the pendulum in the 'OWer vertical position and: Gy (max<m/2) from the up-

noninertial frame of reference associated with its axis: per equilibrium position(Fig. 4). At th_ese_ positions of the
) pendulum, the mean torque of gravity is balanced by the
a

. . ) . mean torque of the force of inertia. However, these equilib-
Y=—wpSINY— 5 17 0" COSsing. (12)  tjum positions are unstable: The slightest disturbance makes
) ) _ the pendulum slowly slip down into one of the wells and
The mean torque on the right-hand side of E#) is  ogcillate there moving from one slope to the other and back.
calculated approximately under the assumption that thehe pattern of such slow oscillatiofiaveraged over the fast
slowly varying angular coordinatg(t) is “frozen.” To fa-  period of constrained vibratiopss far from a sine curve.
cilitate interpretation of the slow motion described by thisThe pendulum stays for a prolonged time near the summit of
nonlinear differential equation, we can introduce a potentiathe potential barrier at the utmost deflection, and then moves
function U(¢) that corresponds to the mean torgN¢y) rather fast toward the other utmost deflection to linger there
exerted on the pendulum. The torque is determined by thegain before the backward fast motion. The simulation of
derivative of this potential functionN(y)=—dU()/d. such a motion is shown in Fig. 5.
The observer mentioned earlier who doesn’t notice the rapid
oscillating motion of the pendulum can simply consider thaty. THE PENDULUM WITH A HORIZONTALLY
the system moves in an effective potential fitld=U(4/).  |BRATING PIVOT
Such a potential function that governs the smooth motion of
the pendulum averaged over the rapid oscillations was first A similar approach can be applied to the pendulum whose
introduced by Landalf and derived by various different axis is forced to rapidly oscillate in the horizontal direction.
methods afterward&see, e.g., Ref. 16, 19, or GFrom the In this case the force of inertig;,(t) = —mX(t) is directed
right-hand part of Eq(12) we conclude that the effective horizontally. Its mean torque tends to align the pendulum
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horizontally, repelling it both from downward and inverted mined by a criterion similar to conditiof¥) or (8) that de-
vertical positions. The torque is determined by an expressiotermine stability of the inverted pendulum at vertical vibra-
of the opposite sign compared with the similar Eg).for the  tions of the axis.

vertical vibration: Both vertical positions correspond to an unstable equilib-
L2 2 . rium of the pendulum. If we gradually diminish the fre-
(Fin() cog ¢+ 6)) = sma’w” cosyrsin . (149 quencyw of forced horizontal oscillations of the axis or their

mplitudea (or bothw anda), then, as we can see from Eq.
15), the angled increases and the lateral stable equilibrium
Spositions deviate more and more downward. They disappear
at a’w?<2gl merging with the lower vertical equilibrium
position, which then becomes stable.

. - . An example of oscillations of the pendulum whose axis is
Us(¢) Tor this case are shown in Fig. 6. We can Oleterm'madriven with a high frequency in the horizontal direction is

the angle of deviatiom of the pendulum from the horizontal shown in Fig. 7. In its slow motion, the pendulum crosses

line in any of the lateral equilibrium positions9=7/2  geyeral times the lowetunstable vertical position, and

— 4o, where *y, are positions of the two symmetric eyentually is captured in one of the lateral equilibrium posi-
minima of U (), see Fig. § by equating the average value tions. We can see that in the reference frame associated with
of the torque of the force of inertia tending to align the pen-the axis, after the slow motion has damped away, the pendu-
dulum horizontally and the torque of the gravitational forcelum’s rod is not at rest but rather executes small rapid oscil-
tending to turn the pendulum downward into the verticallations with the frequency of the axis. The final state in the

In the absence of gravitation this torque creates two stabl
equilibrium positions located oppositelat = =+ 7/2) on
the same level with the axis. The force of gravity deviate
downward these symmetrical equilibrium positions.

The graphs of potential functiondy(¢), Ui,(¢), and

position: phase plane is a small closed loop encircling the point that
2al corre_sponds to the bottom of the effective potential well.

sing= % (15) This behavior of the pendulum can also be easily demon-

® strated in a real experiment with the help of the simple de-

T - L vice mentioned earlier. It is sufficient to turn it in the vertical
The lateral equilibrium positions exist if the produsa of plane through an angle of 90° in order for the pendulum’s
the frequency and amplitude of horizontal vibration of thezyis pe forced to vibrate horizontally.
axis is greater than/2gl. Therefore the existence of these  Computer simulations of similar oscillations about one of
equilibrium  positions at the horizontal vibration is deter- the lateral equilibrium positions in the absence of friction
have been reported in Ref. 19.

Uuw) VI. MODES OF REGULAR SYNCHRONIZED
OSCILLATIONS OF THE PARAMETRICALLY
EXCITED PENDULUM

Next we briefly discuss the modes in which the driving
p U, frequencyw is an integer multiplen of the frequencyw,, (or
; ; gown) Of Slow oscillations:o =nw, (0r ®=Nwgguy). Over
3 ‘ certain parts of the parameter spdtiee driving amplitude
Ug| ™ : and frequency within certain rangeshe pendulum whose
1 i axis is vibrating with a high frequency, instead of gradually
- -2y, 0 ¥, 72 z v approaching the equilibrium positigeither dynamically sta-
bilized inverted position or ordinary downward positidsy
Fig. 6. Graphs of the gravitational potential eneidy,, mean potential  the process of damped slow oscillations, is trapped in an

energyU,, in the field of the force of inertia, and of the total potential n-periodi{: oscillation |0C!(€‘d_ in phase to the rapid oscillation
energyU () for the pendulum with a horizontally oscillating axis. of the axis. In such oscillations the phase trajectory repeats
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(quality 6.0, axis frequency 12.0, axis ampl. 0.15, initial defl. 0.0 degr., init. ang. velocity 0.0)

itself aftern driving periodsT. Since the motion has period lations, the corresponding minimum of the effective potential
nT, this phenomenon can be called a subharmonic resonancan be approximated by a parabolic well in which the
of nth order. An example of such stationary oscillationssmooth component of motion is almost harmonic. To esti-
whose period equals eight periods of the axis is shown imate the frequency of this slow motidthe fundamental
Fig. 8. For the inverted pendulum with a vibrating pivot, frequency, we can use Eq(10). As an example, we next
periodic oscillations of this type were first described byconsider the pendulum in the absence of gravity, or, which is
Achesorf? who called them “multiple-nodding” oscilla-  essentially the same, in the limiting case of very high driving
tions. frequenciesw> wg (w/wg—0). In this limit both equilib-

The upper left-hand part of Fig. 8 shows the closed spatiafium positions(ordinary and invertexdare equivalent, and the
trajectory of the pendulum’s bob at these “quadruple-dimensionless driving amplitud®| is the only parameter to
nodding” oscillations. Such an extraordinary and even, ale predicted as a required condition of the subharmonic reso-
first sight, counterintuitive behavior of the pendulum canpgnce of orden (of synchronized with the pivat-periodic
also be explained on the basis of the approximate approatkciliations of the pendulum

developed earlier in Secs. Il and IIl. According to Eq.(10), for w,=0 the frequency of slow

First of all we note that these modes of regular per'Od'CosciIIations is given by wye=al/(IVZ)w. For the

oscillations are not specific to the inverted pendulum with a‘quadruple—nodding” mode the slow motion period equals

vibrating pivot. Similar oscillations can be executed dlab . . ; =
appropriate values of the driving paramejeabout the ordi- eight periods of the axis, so thaiyo,=«/8, whencea/l

nary (downward hangingequilibrium position. Actually, the ~=Y2/8=0.177. This value agrees well with the predictions
origin of these modes is independent of gravity, becaus@f & more sophisticated quantitative theory of these modes
such synchronized with the pivot “multiple-nodding” oscil- based on the Ilnearlz_ed d!fferentlal equation of the system
lations can occur also in the absence of gravity about any dfs€e the Appendix which gives for such period-8 small os-
the two equivalent dynamically stabilized equilibrium posi- Cillations in the absence of gravity the following expression
tions of the pendulum with a vibrating axis. Even the pendu-or the driving amplitudea,,=63/(32/130)l =0.173. The
lum with horizontally vibrating pivot can execute similar latter value agrees perfectly with the simulation experiment
n-periodic oscillations about each of the lateral equilibriumin the limit of extremely small amplitudes.
positions. Synchronization of these modes with the pivot os- Estimating conditions fon-periodic oscillations with the
cillations creates conditions for supplying the energy to thehelp of Eq.(10), we assume the slow motion of the pendu-
pendulum needed to compensate for dissipation, and thiem in the effective potential well to be simple harmonic,
whole process becomes exactly periodic. which is true only if this motion is limited to within a small
The approximate theory developed earlier in this papevwicinity of the bottom of this well. Therefore we get the
allows us to predict conditions at which thes@eriodic os- lower limit for the driving amplitude at which-periodic
cillations can occur. For small amplitudes of the slow oscil-oscillations of only infinitely small amplitude can occur.
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Smooth nonharmonic oscillations of a finite angular excur-8, the amplitudes of these harmonics differ slightly from the
sion that extends over the slanting slopes of the nonparabola@bove values, and the contributions of the third, fifth, and
effective potential well are characterized by a greater perio@&leventh harmonics are also noticeable.
than the small-amplitude harmonic oscillations occurring As noted earlier, in the case of period-8 oscillations of a
within the parabolic bottom of this well. Therefore large- small swing the approach based on the effective potential
amplitude period-8 oscillations shown in Fig(#eir swing  predicts for the driving amplitudea/I a value of v2/8
equals 80F occur at a considerably greater value of the driv-—q 177, which is rather close to the exact low-amplitude
ing amplitude @=0.263). _ theoretical limit @/1=0.173). To obtain the slow oscilla-
The right-hand side of Fig. 8, alongside the graph#@)  {jons of a smaller periodsay, of six driving periods we
and¢(t) for the period-8 steady-state oscillations of the pen-spuid increase the driving amplitude. Indeed, wheg,
dulum, shows also their harmonic components and the:w/G' Eq. (10) yields a greater valua/|=1/?/6=0.23g.

graphs of the pivet oscillations. The specirum of thes’eHowever, for such period-6 oscillations this predicted value

period-8 oscillations is rich in harmonics. The fundamental . .
harmonic whose period equals eight driving periods domi.2grees somewhat worse with the theory based on the linear-

nates in the spectrum. We may treat it as a subharmasic 29 equation of the system. This thedsge the Appendix -
an “undertone’) of the driving oscillation. This principal gives for period-6 small oscillations in the absence of gravity

harmonic describes the smooth component of the compourfy value of the minimal driving amplitude ofayi,
period-8 oscillation. Strange as it may seem from the first=35/(18/74)=0.226, which perfectly agrees with the cor-
sight, the harmonic with the driving frequency has zero amJesponding simulation experiment. Not surprisingly, for the
plitude, that is, this harmonic is absent in the spectrum. Hown-periodic oscillation with a smath we cannot expect good
ever, this peculiarity also can be easily explained on the basiguantitative predictions from the effective potential approach
of the approach developed in this paper. In B), which  because in such cases the period of a “smooth” motion con-
represents the angular position of the pendulg(h) as a tains only a few driving periods. The “rapid” component of
superposition of slow and fast motions, the rapid componeniie motion here is not rapid enough for good averaging.
with the driving frequency enters the expression §g(t) Neverthgless, the .efft_active potential_approach provides us
being multiplied by the sine of the slow varying coordinate not only with a qualitative understanding of these complex
(t). Therefore the rapid component has varying amplitudePeriodic modes, but also, being applicable to large-amplitude
which even changes its sign each time the pendulum cross830tions, explains the coexistence of severaperiodic

the equilibrium position. Actually, the rapidly oscillating Modes with different values at identical system parameters.
second term in Eq(3) is not a harmonic component in the Figure 9 shows large-amplitude period-6 asymptotic oscilla-
spectrum of the resulting periodic oscillation, because hartions without gravity obtained at the same vahfé=0.265
monics of a periodic function are characterized by constanef the driving amplitude as the period-8 oscillations shown in
amplitudes. Fig. 8.

For small angular excursions of the pendulum occurring at For a large angular excursion, the smooth motion occurs
driving amplitudes slightly greater than the critical valuein the nonparabolic effective potential well, in which the
amin=0.173, the spectrum of period-8 oscillations is formed period becomes longer if we increase the amplitude. By vir-
by the principal harmoni¢frequencyw/8), and also by the tue of this dependence of the period of nonharmonic smooth
seventh and ninth harmonics whose frequen¢ieg8 and  motion on the swing, different modémodes with different
9w/8) are close to the driving frequeney. Their amplitudes values ofn) can coexist at the same amplitude of the pivot.
equal, respectively, 11.3% and 6.8% of the principal harindeed, the period of a large-amplitude slow oscillation can
monic amplitude. These theoretical valusge the Appen- be equal to, say, six driving periods, while the period of
dix) agree perfectly with the corresponding simulation ex-oscillation with a somewhat greater amplitude in the same
periment. For the oscillations of a large swing shown in Fig.nonparabolic potential well can be equal to eight driving
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Fig. 10. Stationary double-period oscillations occurring
over the upper boundary of dynamic stability of the

inverted pendulum. The graphs are obtained by a nu-
merical integration of the exact differential equation for

0{ the momentary angular deflectigr(t), Eq. (11).

5 6
(quality 10.0, no gravity, axis amplitude 0.56, initial defl. 117.0 degr., init. ang. velocity 0.076)

periods. Figures 8 and 9 show, respectively, the simulationswverted pendulum, as well as the loss of stability of the
of such coexisting period-8 and period-6 modes, obtained atoninverted pendulum at conditions of ordinary parametric
the identical parameters of the system. That is, both smoottesonance(In the latter case the driving amplitude can be
motions occur in the same potential well. In which of thesesmall, but the driving frequency is not high enough for the
competing modes the pendulum eventually is trapped in aeparation of rapid and slow motiops.
certain simulation, depends on the starting conditions. The However, the simulation showsee Fig. 1Da very simple
set of initial conditions that leads, after an interval in which spectral composition of period-2 oscillations occurring over
transients decay, to a given dynamic equilibrifto the the upper boundary of dynamic stability: the fundamental
same steady-state periodic motion, or attrgciorthe limit ~ harmonic whose frequency equad#? (half the driving fre-
of large time, constitutes the basin of attraction of this attracquencyw) with a small addition of the third harmonic with
tor. The coexisting periodic motions in Figs. 8 and 9 repre-the frequency @/2. We note that large-amplitude oscilla-
sent competing attractors and are characterized by differetibns of the noninverted pendulum in conditions of the prin-
domains of attraction. cipal parametric resonance are characterized by a similar
With gravity, these complexn-periodic “multiple-  spectrum. This similarity of the spectra is by no means oc-
nodding” modes exist both for the inverted and noninvertedcasional: Next we show that both the ordinary parametric

pendulums. resonance and the period-2 “flutter” mode that destroys the
dynamic stability of the inverted state belong essentially to

VIl. THE UPPER BOUNDARY OF THE DYNAMIC the same branch of possible steady-state period-2 oscillations

STABILITY of the parametrically excited pendulum. Therefore the upper

boundary of dynamic stability for the inverted pendulum can

When the amplitude of the pivot vibrations is increased be found directly from the differential equation of the system
beyond a certain critical valua,,,, the dynamically stabi- by the same method that is commonly used for determination
lized inverted position of the pendulum loses its stability.0f conditions which lead to the loss of stability of the non-
After a disturbance the pendulum does not come to rest ifverted pendulum through excitation of ordinary parametric
the up position, no matter how small the release angle, bugsonancéthe ranges of parametric instability; see, e.g., Ref.
instead eventually settles into a finite amplitude steady-staté0)-
oscillation about the vertical position at frequeno2 (half To calculate the critical driving amplitude that destabilizes
the driving frequency This loss of stability of the inverted the hanging down vertical position, we can replacegshy
pendulum has been first described by Blackbetral® (the ¢ in the exact differential equation of the parametrically
“flutter” mode) and demonstrated experimentally in Ref. 17.driven pendulum, Eq(11), and omit the damping term, thus
The latest numerical investigation of the bifurcations associfeducing it to the Mathieu equation:
ated with the stability of the inverted state can be found in
Ref. 7. The graphs and the double-lobed phase trajectory of
such oscillations are shown in Fig. 10. o+

Obviously, these oscillations can be regarded as a special
case of then-periodic steady-state modes considered in the
previous section, particularly, the case that corresponds to Investigating stability of the inverted position, we use the
n=2. As we already mentioned, for small valuesroit is  (small angle §=7— ¢, and replace sifl by 6 in the exact
impossible to correctly represent the pendulum motion aslifferential equation, Eq(11). Thus we also obtain for the
consisting of the slow and rapid components. The drivingangle 6 of deflection from the inverted position the linear
amplitudea,, 4 is not small compared with the lengtlof the ~ Mathieu equation which differs from E@L6) for the anglep
pendulum. Consequently, this case occurs beyond the limitsnly by the opposite sign of the second term. As we can see
of applicability of the approach based on the effective potene¢learly from Fig. 10, the periodic solution to this equation
tial. This approach cannot explain the destabilization of thecorresponding to the desired boundary of instability can be

wz_g 2 _
0 w*sinwt | ¢=0. (16)
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Fig. 11. The amplitudé, of the principal harmonic for period-2flutter” ) 0 2 4 6 8 10
steady-state oscillations of the pendulum over the upper boundary of the Driving frequency w/e,
dynamic stability(in the absence of gravity

Fig. 12. The boundaries of parametric instability—driving amplitude vs

normalized driving frequency. 1 and 2—Ileft and right frequency boundaries

of the principal interval of parametric instabilitywé2w,) for the nonin-
sought as a superposition of the fundamental harmonigerted pendulum in the absence of friction, 3—the same with fricti@n (
whose frequency/2 equals half the driving frequency, and =5.0), 4 and 5—the upper and lower boundaries of dynamic stability for
the third harmonic with the frequencyw®: the inverted pendulum.

0(t)=7— @(t)=Aq sin(wt/2) + Az sin3wt/2). a7

We consider first for simplicity the case,=0, which  tions, and finally, at/I=0.56622(for Q=20), the oscilla-
corresponds to the absence of gravity to the high fre-  tory motion of the pendulum becomes replaced, at the end of
quency limit of the pivot oscillations with gravity Substi- & Very long chaotic transient, by a regular unidirectional
tuting (t) from Eq.(17) into the corresponding differential P€riod-1 rotation. _ o _
equation and expanding the products of trigonometric func-, Similar (though more complicatgdheoretical investiga-
tions, we obtain an expression in which we should equate ton of the boundary conditions for period-2 stationary oscil-
zero the coefficients of sint/2) and sin(@t/2). Thus we get ations in the presence of gravity allows us to obtain the

: I dependence of the criticdtlestabilizing amplitude of the
a system of homogeneous equations for the coefficidpts . -
andA;, which has a nontrivial solution when its determinantprOt on the driving frequency. For the upper boundary of

stability of the hanging down pendulum we find:
equals zero. This requirement yields a quadratic equation for e ging down pencuiium we 1

the desired dimensionless critical driving amplitwedé. The all =|(y117- 232 wo/ 0)?+ 80 wq/ w)*

relevant root of this equation ia/l =3(v3—3)/4=0.454, _94+ 2

and the corresponding ratio of amplitudes of the third har- 9 4'(_(00/“’) )|/_4’ (18)
monic to the fundamental one equaﬂg/Alz(\/l—S—S)IG and for the stability of the inverted pendulum:

= 0.191. A somewhat more complicated_ calculation in which 5/ = (V117+ 232wyl w) 2+ 80wy @)?)

the higher harmonicgup to the seventhin 6(t) are taken 5

into account yields fom/I andAz/A; the values that coin- —9—4(wo/w)?)/4. (19

cide (within the assumed accuracwith those cited above. The diagram in Fig. 12 shows these boundaries of

These values agree well with the simulation experiment innstability >* For the hanging down pendulum, in the absence
conditions of the absence of gravity¢=0) and very small  of friction the critical amplitude given by Eq18) tends to
angular excursion of the pendulum. When the normalizegero as the frequency of the pivot approacheg #rom ei-
amplitude of the pivol/l exceeds the critical valugn./I  ther side(curves 1 and 2 This case(small vertical oscilla-
=0.454, the swing of the period-2 “flutter” oscillatioam-  tions of the pivot with the frequency approximately twice the
plitude A, of the fundamental harmonjimcreases in propor- natural frequency of the pendulymorresponds to ordinary
tion to the square root of this excessjx\a—an, This Parametric resonance. Instability of the hanging down pen-
dependence follows from the nonlinear differential equatiordulum within the principal interval of parametric resonance
of the pendulum, Eq(11), if sine in it is expanded agy ~ allows a very clear physical explanati shCurve 3 shows in

— ¢3/6, and also agrees well with the simulation experimenth€ Parameters planew(wo,a/l) the region of principal
(Fig. 11 for amplitudes up to 45°. parametric resonance with frictidfor Q=5.0). The nonin-
As the amplitudea of the pivot is increased beyond the Vverted vertical position of the pendulum with the pivot vi-
value 0.558 the symmetry-breaking bifurcation occurs: The brating at frequency & loses stability when the normalized
angular excursions of the pendulum to one side and to thamplitude of this vibration exceeds the threshold value of
other become different, destroying the spatial symmetry ofl/2Q. This curve almost merges with curves 1 and 2 as the
the oscillation and hence the symmetry of the phase orbit. Afrequencyw deviates from the resonant valueg. In the
the pivot amplitude is increased further, afeét =0.565 the  high-frequency limit, for which the role of gravity is negli-
system undergoes a sequence of period-doubling bifurcagible, the normalized critical pivot amplitudé! tends to the
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nary parametric resonancand the upper limit of the dy-
namic stability of the inverted pendulufthe “flutter” os-
cillations).

To make this relationship obvious, in Fig. 13 the same
boundaries are shown as curves that give the dependence of
the driving amplitudea/l on the inverse quantitya{y/w)?
(instead ofw/wq in Fig. 12. We note that negative values of
(wo/w)? correspond to the inverted pendulum, because the
differential equation for the deviation from the inverted po-
sition = 7 — ¢ differs from the differential equation for os-
cillations about the hanging downward position simply by
the opposite sign of the term that describes the torque of
gravitational and inertial forces. Curve(@r curve 3 in the
presence of frictiofy which gives the boundary of ordinary
parametric resonance for the noninverted pendulum, inter-
sects the zero value @,/ w (corresponding to an infinitely
large driving frequency, or zero gravjtat a/l =0.454 and
extends to the negative region @f/w as the upper bound-
Fig. 13. The boundaries of parametric instability—driving amplitude vs ary of stability for the- inverted pendul_um.
nagural frequency. 1 and 2—bgundaries of the prir¥cipal intgrval gf paramet- Curve 5,0n both dlagrams shows in the paramgter plane
ric instability (w~2w,) for the noninverted pendulum in the absence of the _apprommate lower bo_undary of dynamlc stabilization of
friction, 3—the same with friction@=5.0), 4 and 5—the upper and lower the inverted pendulum, given by E() or Eq.(8). The loss
boundaries of dynamic stability for the inverted pendulum. of stability at crossing this lower boundary occurs when the
effective potential well corresponding to the inverted posi-
tion has zero depth. Thus, the region of stability of the in-

verted pendulum occupies the shaded part of the parameter
value indicated abovey| = 3(1/13— 3)/4=0.454, that corre-  plane between curves 5 and 4.

sponds to the destabilization of the two symmetric equilib- We note that compler-periodic(or “multiple-nodding”)
rium positions in the absence of gravity. oscillations withn>2 (explained earlier in this paper on the

Curve 4 of this diagram given by E¢L9) corresponds to  pasis of the effective potential approximatiarccur at driv-
destabilization of the inverted pendulum by excitation of thejng amplitudesa below the critical valuea,,, and also oc-

“flutter” oscillations. The smaller the frequency of the ¢ypy 4 region below curve 4 on the parameter plane. How-
pivot, the greater the critical amplitude at which the invertedeyer, the existence of these asymptotic oscillatory states does
position becomes unstable. We note that this curve 4 for thgot influence the dynamic stability of both inverted and or-
boundary of the “flutter” mode is essentially the continua- ginary equilibrium positions because the pendulum can be
tion (through infinite values of the driving frequenayf the  rapped in then-periodic motions only after a certain initial
same branclicurve 2 without friction or curve 3 with fric- gisturbance, when its initial state occurs within the corre-
tion) of period-2 steady-state oscillations with the time de-gponding domain of attraction—otherwise the pendulum
pendence given by E@17). That is, curve 4 is the continu- comes to rest.

ation of curve 2(or curve 3 that corresponds to the

boundaries of instability with respect to excitation of the\,; cONCLUDING REMARKS

ordinary parametric resonance of the noninverted pendulum.

This means that there is a close inherent relationship between The behavior of the parametrically excited pendulum dis-
the parametric instability of the noninverted pendul(ordi-  cussed in this paper is richer in various modes than we can

Driving amplitude o/

0.0
-0.4 -0.2 0.0 0.2 0.4 0.6
Natural frequency squared (©/w)?

Fig. 14. The spatial path, phase orbit, and graphs of
stationary oscillations with the period that equals eight
. : periods of the oscillating axis. The graphs are obtained
p(t) by a numerical integration of the exact differential
R % N equation for the momentary angular deflectipft),

: : Eq. (12).

0 1 2 3 4 5 6 7 8
(quality 60.0, axis frequency 5.0, axis ampl. 0.525, initial defl. 181.23 degr., init. ang. velocity 1.0477)
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expect for such a simple physical system relying on our in-  ¢(t)=A, cog wt/8) + A; cog 7 wt/8) + Ag cog Ywt/8).
tuition. Its nonlinear large-amplitude motions can hardly be o ) ) )
called “simple.” The simulations show that variations of the Substitutinge(t) in Eq. (16) with wo=0 yields the follow-

parameter sefdimensionless driving amplitud®|, normal-  ing system forA,:

ized driving frequencyn/wg, and quality factoQ) result in A — 32 A+ A (a/l)=0. 32A.(a/l)—49A.=0

different regular and chaotic types of dynamical behavior. 17 32A A+ Ag)(a/) =0, @) e
One more example of rather counterintuitive regular oscil-  32A;(a/l) —81A4=0.

lations is given by Fig. 14. The period of this motion equals o . ]

eight driving periods, just like in the example shown in Fig.A nontrivial solution exists fora/l =63/(32,/130)=0.173.

8, but the character of oscillations and their spectrum differThis critical value of the driving amplitude was already men-
dramatically. Here the third and fifth harmonics dominate intioned in Sec. VI, and it agrees exactly with the simulation
the spectrum. The third harmonic is characterized by an anexperiment for period-8 small oscillations. The above equa-
plitude almost ten times greater than the fundamental hations also yield the fractional contributions of the seventh
monic. and ninth harmonicsA;/A;=9/(7/130)=0.113, Ag/A;

In this paper we have touched only a small portion of the=7/(9./130)=0.068—the values that also agree perfectly
stationary states and regular motions of the parametricallyell with the simulations based on numerical integration of
excited pendulum. The pendulum’s dynamics exhibits ahe differential equation.
great variety of other asymptotic rotational, oscillatory, and  Similarly, an approximate solution for the period-6 oscil-
combined(both rotational and oscillatoyymultiple-periodic  |ations can be sought in the form:
stationary stategattractors, whose basins of attraction are
characterized by a surprisingly complékactal) structure. @(t)=A; cog wt/6) +As cog Swt/6) + A; COg 7 wt/6),
Computer simulations also reveal intricate sequences of bigien vields the following system of equations fa
furcations, leading to numerous intriguing chaotic regimes.
All this remains beyond the scope of this paper. With good A, —18As;+A;)(a/l)=0, 18A;(a/l)—25A;=0,
reason we can suppose that this apparently simple physical
system is nearly inexhaustible. 18A;(a/l) —49A;=0.

These equations give for the critical driving amplitude the
value a/l =35/(18,/74)=0.226, and for fractional contribu-
tions of the fifth and seventh harmonics, respectively,
As/A,=T7/(5\74)=0.163, and A,/A,=5/(774)=0.083.

To calculate the criticalminimal) driving amplitude that These theoretical values agree quite well with the simula-
allows the pendulum to executeperiodic stationary oscil- tions.
lations in the limit of small amplitude&@bout both the hang- Similarly, for the period-4 small-amplitude oscillations:
ing down and inverted positionswe can use the linearized
di?ferential equation of {)he papametrically driven pendulum, ¢(t)=A, cod wt/4) + Ag cog3wt/4) +As cod Swt/d),
that is, the Mathieu equation, E(jLG)_. We can search for its A,—8(As+As)(all)=0, 8As(al/l)—9A;=0,
approximate small-amplitude solutias(t) for periodn os-
cillations as a superposition of the principd@indamental 8Al(al/l)—25A5=0,

harmonicA; sin(wt/n) whose frequency equals/n (the sub- _ _ _ _

harmonic of orden with respect to the driving frequency), whencea/l = 15/(8,/34) 0‘3_21’A3 IA 5/,(3\/3—4) 0‘,286’

and a limited number of higher harmonids, sinkwt/n). A5/A1:3/_(5\/3—4):0'103' If in the approximate solution we

[Further on we chose the time origin so that the pivot's mo-2lso take into account the seventh harmonic, for zero gravity
and zero friction we find more accurate values of the critical

tion is described byz(t) =acoswt.] Substitutinge(t) into o : = . L
the differential equation and expanding the products of trigo_dnvmg amplitudea/l =0.320 and fractional contributions of

nometric functions, we obtain a system of homogeneou§igh harmonics Az/A;=0.288, As/A;=0.102, A7/A;
equations for the coefficien®, (for the amplitudes of har- = 0-015. We can compare these values with results of the
monic9. The homogeneous system has a nontrivial solutiorfimulation experimenta/l =0.320, A3/A;=0.287, As /A,
if its determinant equals zero. This condition yields an equa=0.101,A;/A;=0.016.
tion for the corresponding critical driving amplitude. Then, The simulations show that, besides the above-considered
for the critical driving amplitude, the fractional amplitudes of n-periodic oscillations with even values of stationary para-
different harmonics are found as the solutions to this homometric oscillations with oddh values =3,5,...) are also
geneous system of equations. possible. Critical values for the driving amplitudes that pro-
For the period-8 oscillations in the absence of gravityvide such small oscillations also can be found on the basis of
(wp=0), the procedure described above yields zero amplia linearized theory, and the results of such calculations show
tudes of the third and fiftiland eleventhharmonics(How-  good agreement with the simulations.
ever, Fig. 8 shows that for large angular excursions, for The existence ofn-periodic subharmonic oscillations
which the linearized differential equation is insufficient, the whose spectrum is characterized by zeovery small am-
third harmonic also gives a noticeable contributjdfor the  plitude of the principal(fundamentgl harmonic with fre-
sake of simplicity we include here in the approximate solu-quencyw/n may seem even more counterintuitive. An ex-
tion only harmonics with significantnonzerg amplitudes, ample of such period-8 oscillations is shown in Fig. 14. For
specifically, the principal harmonic, and the seventh andmall oscillations, third, fifth, and eleventh harmonics domi-
ninth harmonics(which means that actually we ignore the nate in the spectrum, so that we can search an approximate
contribution only of the thirteenth and all higher harmoitics solution of the linearized equation in the form:

APPENDIX: SMALL-AMPLITUDE n-PERIODIC
OSCILLATIONS
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¢(t)=Azcoq3wt/8)+ As cog5wt/8) + A, coq 11wt/8).

Thus we find for the critical amplitude/l = 165/(32/146)
=0.427, and for the fractional amplitudes of harmonics
As/Az=33/(5,146)=0.546, A;1/A;=15/(11/146)
=0.113. More precise value@vhich agree well with the
simulationg are obtained by including also the thirteenth
harmonic: a/l=0.419, Ag/A3;=0.560, A;;/A;=0.111,
A13/A3:0044

Similar (though more complicatedcalculations of the
critical driving amplitudes and spectrum on the basis of a
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ZA similar stability diagram for the parametrically driven pendulum is

given by Fig. 4 of Ref. 16. The curves 2 and 3 of this diagram are given by
the approximate equatiors/| =0.450+ 1.799(w, / w)? respectively, and
tend to 0.450 in the limit of high driving frequenciésr zero gravity.
However, the corresponding curves 2 and 4 in Fig. 12 of the present paper
are given by exact equations, Eq$8) and (19). Approximate expansion

of these equations for high driving frequencies yields =0.454
+1.681(w,/w)?. Figure 12 also shows the lower-frequency boundary of
parametric resonanceurve 1, or the left branch of curve 3 in the presence
of friction), which is absent in Fig. 4 of Ref. 16.

“The time variations of the force of inertia give a clear physical explanation

of the growth of initially small oscillations at conditions of parametric
resonance. When the oscillating pivot is below its middle position, this
additional force is directed downward, and vice versa. We can treat the
effect of this varying force as a periodic modulation of the gravitational
force. Let the pendulum move from the utmost deflection toward the lower
equilibrium position while the pivot in its constrained oscillation is below
the midpoint. Due to the additional apparent gravity the pendulum gains a
greater speed than it would have gained in the absence of the pivot's
motion. During the further motion of the pendulum away from the equi-
librium position, the pivot is above its midpoint, so that the force of inertia
reduces the apparent gravity. Thus the pendulum reaches a greater angular
displacement than it would have reached otherwise. During the second
half-period of the pendulum’s motion the swing increases again, and so
on, until the stationary motion is established due to violation of the reso-
nance conditions at large swing.
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